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A b s t r a c t

In 1937, Stefan Kaczmarz proposed a simple method, called the Kaczmarz algorithm, to solve 
iteratively systems of linear equations Ax = b in Euclidean spaces. This procedure employs 
cyclic orthogonal projections onto the hyperplanes associated with such a  system. In the 
case of a nonsingular matrix A, Kaczmarz showed that his method guarantees convergence 
to the solution of  Ax =  b. The Kaczmarz algorithm was rediscovered in 1948 and became 
an important tool in medical engineering. We briefly discuss generalizations of this method 
and its ramifications, including applications in computer tomography, image processing 
and contemporary harmonic analysis.
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S t r e s z c z e n i e

W 1937 roku Stefan Kaczmarz zaproponował prostą metodę [KA], zwaną obecnie algoryt-
mem Kaczmarza, za pomocą której można rozwiązywać iteracyjnie układy równań liniowych 
Ax  =  b w przestrzeniach euklidesowych. Metoda ta używa cyklicznego ciągu rzutów orto-
gonalnych na hiperpłaszczyzny związane z tym układem. W przypadku macierzy odwracal-
nej A Kaczmarz pokazał, że jego metoda gwarantuje zbieżność do rozwiązania układu równań 
Ax  =  b. Metoda ta została ponownie odkryta w 1948 roku i stała się ważnym narzędziem 
w inżynierii medycznej. Omawiamy tutaj pokrótce uogólnienia tej metody i ich zastosowania 
w tomografii komputerowej, przetwarzaniu obrazów i we współczesnej analizie harmonicznej.
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1.  The origins of the Kaczmarz algorithm

Stefan Kaczmarz has been primarily known as a member of the Lvov School 
of Mathematics and a collaborator of Stefan Banach and Hugo Steinhaus (see a celebrated 
monograph [20])1. His professional interests were orthogonal series, theory of real 
functions, and applications of  mathematics. The aim of this article is to highlight the 
importance of Kaczmarz’s pioneering work [21], which has found numerous applications 
across a  number  of fields, including image processing, computer tomography, and image 
compression. The paper appeared in 1937 in German and is hardly known to the majority 
of the Polish mathematical community, although it became widely recognized in the Western 
hemisphere. For years, researchers have been using the German original, as the English 
version appeared only in 1993, translated by professor P.C. Parks [22].

It seems that the only note on Kaczmarz algorithm in Polish literature was by Cegielski 
[7]. In this paper, the author, a noted expert on modern iterative computational methods, 
refers to an extensive list [8] of English-language publications on the Kaczmarz method. In 
his recent monograph [9], among others, Cegielski studies convergence of such a type of 
methods. 

In its original formulation, the Kaczmarz algorithm (KA) states the following: for a given 
m × n matrix A and a vector b ∈ Rm, we wish to find a solution to the linear system Ax = b. 
Let x0 ∈ Rn. Define the sequence of vectors
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1	 For a superb and exhaustive monograph on Kaczmarz’s research and private life, see [25].

Fig.  1.  Stefan Kaczmarz (1895‒1939)
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and ai is the i-th row of matrix A (where ⋅  stands for the Euclidean norm in Rn). Kaczmarz 
originally considered systems with a square matrix and showed that for a nonsingular 
matrix A, the sequence (xk) converges to the solution, regardless of the starting point x0 ∈ Rn.

How does the algorithm work? For any 1 £ k £ n, the above formula presents 
the orthogonal projection of the point xk onto the affine hyperplane

	 H R b i ni
n i

i= ∈ < > = ={ : , } ( , , ).x a x 1 	

The point xn+1 is projected again onto the hyperplane H1, xn+2 is projected onto H2, 
and so on. It is also called a cyclic projection method. In general, when A is of full rank, 
one gets xk → x for some solution x to the system Ax = b.

The KA is historically the first numerical method exploring sequences of orthogonal 
projections onto hyperplanes. This method, while completely elementary ‒ high school 
students should be able to grasp it ‒ is quite powerful. On the other hand, certain issues such 
as the speed of convergence, were hard to settle.

In the simplest case of two intersecting lines l1 and l2 on the plane with normal (linearly 
independent) vectors a1 and a2, for a given seed point x0, (xk) is the sequence of alternating 
orthogonal projections on these lines. The sequence obviously converges to the common 
point x of the given lines.

Soon after the Kaczmarz’s discovery, in 1938, Gianfranco Cimmino [10] proposed 
a  similar iterative method: one reflects a given point xk ∈ Rn about all hyperplanes Hi 
and averages these reflections with respect to a fixed probability vector w = (w1, …, wn):
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Fig.  2.  The Kaczmarz method in the case of intersecting lines on the plane
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Cimmino showed that his method of simultaneous reflections converges to a solution. 
Both  Kaczmarz and Cimmino algorithms were established ahead of their time and their 
invention passed in math community virtually unnoticed. These methods evolved from 
original forms and their generalized versions are currently widely used to solve large 
systems of linear equations. Although Cimmino’s algorithm is slightly slower than the KA, 
the advantage of this method is the opportunity of using parallel processors. We should point 
out that Cimmino’s method was extended to simultaneous projections onto closed convex 
sets.

2.  Reemergence of the Kaczmarz algorithm

For more than a decade the KA was in oblivion. It resurfaced in separate publications 
of Bodewig [2] (1948), Forsythe [14] (1953), and Tompkins [32] (1949). The methods 
of  projections were already known to these authors and the KA was performing 
remarkably well, despite slow computers in the early 1950s.

Systematic studies and applications of the KA started in 1970 with the paper by Gordon, 
Bender and Herman [15]. The KA was rediscovered by these authors and is known as 
the  Algebraic Reconstruction Technique in computer tomography. For matrix A ∈ Rm×n, 
solvability of the matrix equation Ax = b indeed means finding (reconstructing) x from 
the data: < ai, x > = bi, i = 1, 2, …, m; we assume here that m ? n (overdetermined system) 
and A is of full rank.

In 1971, Tanabe [31], undertook the effort of generalizing the KA and providing a deeper 
insight into the theoretical aspects of this method. He showed that the sequence (xk) of iterates 
always converges, regardless of the consistency of the system Ax = b. He also noticed that 
the KA can be used to approximate the Moore-Penrose pseudoinverse A† of a matrix A.

The KA was implemented in the first medical scanner in 1972. It became clear that there 
were a lot of potential applications of the KA. During the second half of the past century, 
the  computational mathematics community witnessed an outburst of various iterative 
techniques, including simultaneous projections, relaxation and averaging techniques. Faster 
hardware and efficient software contributed to a rapid increase in applications of these 
techniques in medical sciences, e.g., in reconstruction of 3D images through 2D projections 
(computer tomography), see Brooks [4]. The Kaczmarz method can be considered as 
a special case of the POSC (Projection onto Convex Sets) method, see [9] and references 
therein, including Kiwiel [23], and the important survey paper by Bauschke and Borwein 
[1]. This technique plays a prominent role in signal and image processing, particularly 
in medical image processing, and in such disciplines as operations research and game theory. 
Byrne’s monograph [6] emphasizes the importance of the so-called block Kaczmarz method; 
see also [5].

3.  Evolution of the Kaczmarz method

Over the time, the KA evolved to become faster and more efficient. One of important 
modifications of the original KA is the so-called randomized Kaczmarz algorithm:
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.  The  magnitude of rows ai of A cannot be ignored. Theoretical results 

on  exponential convergence in expectation were obtained by Strohmer and Vershynin 
in their seminal work [30]. In fact, it is the first paper where such an estimate was obtained 
for the randomized KA. An interesting follow-up was done by Deanna Needell in [27]; see 
also her other work [18], [28], and [29]. In [13] the authors presented a modified version 
of  the randomized KA, which in most cases significantly improved the convergence rate. 
They utilized the Johnson-Lindenstrauss dimension reduction technique to keep the runtime 
at the same order as that of original randomized version. The Johnson-Lindenstrauss lemma 
is a very interesting fact in its own right: it is one of the most quoted results in analysis, 
and deserves a separate exposition:

Let d > 0 and S be a finite set of points in Rn. Then for any d satisfying

	 d C
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³
log

,
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there exists a Lipschitz mapping F R Rn d: →  such that
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for all s s Si j, ∈  [19].

In recent times, several master’s and doctoral theses on spectral tomography and the 
block KA appeared, see [3, 4] (mentioned earlier), and [12]. An earlier dissertation by 
Grangeat [16] addressed the 3D image reconstruction from 2D X-ray pictures, however it 
did not directly refer to the KA. It is worthwhile to mention [33], which presented a practical 
application of the KA.

4.  Extension of the Kaczmarz method to Hilbert spaces

In 1977, McCormick [26] was the first to investigate the KA in Hilbert spaces. In 2001, 
Kwapień and Mycielski [24] proposed an efficient generalization of the KA to infinite- 
-dimensional Hilbert space. Here is their generalization: Let H be a Hilbert space and let 
( )en

n=0
¥

 be a sequence of unit vectors in H. Given x ∈ H, the Kaczmarz algorithm is defined 
as:
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It is important to notice that in a finite-dimensional case, the iterative sequence generated 
by the KA is always convergent, while the situation in the infinite-dimensional setup may 
differ. We say that the sequence ( )en

n=0
¥  is effective if and only if ∀ ∈x H  lim .n

n
→ =¥ x x  

Kwapień and Mycielski introduced the following sequence ( ) :gn
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 They showed that the sequence ( )en
n=0
¥  is 

effective if and only if ( )gn
n=0
¥  is a tight frame with constant 1 for H. Let us recall that the 

sequence ( )gn
n=0
¥  is a tight frame with constant 1 if v v g2 2
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 for each 
v∈H .

In 2005, Haller and Szwarc [17] made a follow up and connected Kwapień-Mycielski 
results with construction of frames and tight frames in harmonic analysis. They showed that 
a sequence  ( )en

n=0
¥  is an effective sequence if and only if it is linearly dense in H and for 

a certain matrix C associated with the Gram matrix of the sequence ( ) ,en
n=

∗
0

¥ C C  is an 
orthogonal projection, i.e., C is partial isometry.

Recently, Czaja and Tanis pursued further studies [11] concerning the nature of the 

KA. Their starting point was the observation that if a sequence ( )en
n=0
¥  is an orthonormal 

basis in H, then gn = en and by the Kwapień-Mycielski theorem, ( )en
n=0
¥  is an effective 

sequence. They introduced the concept of an almost effective sequence and characterized 
such sequences (under the assumption of being a Bessel sequence) in terms of frames. At the 
beginning of this section, we mentioned that McCormick extended the classical KA to solve 
Ax = b, where A is a bounded linear transformation on l2(N) and b ∈ Ran(A). McCormick 
considered a finite-dimensional approximation of such a problem by a sequence of increasing 
finite-dimensional subspaces. After imposing certain frame conditions on rows of the matrix 
operator A, one can get a better convergence estimate of the process. Thus, assume that an 
infinite dimensional matrix A has rows ai ∈ l2(N) that form a linearly dense system in l2(N) 

and choose the initial guess x b a

a
0

0

0

0 2: .=  Czaja and Tanis showed the following: Let 

A : ( ) ( )l N l N2 2→  be a bounded (matrix) transformation. Then, for the initial guess x0, the 
KA algorithm always converges to a solution if and only if A is surjective with rows that form 
an orthogonal basis for l2(N).

This note covers only selected contributors to the development of the Kaczmarz method. 
Other names of particular note include M. Benzi, Y. Censor, P.L. Combettes, S.D. Flåm, 
F. Natterer, and C. Popa. 
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5.  Epilogue

Professor W. Orlicz once mentioned: “It seems that Cracovian Calculus of Tadeusz 
Banachiewicz and Kaczmarz method are the most important Polish achievements 
in  numerical  analysis between the wars”. In the era of modern computing, Cracovian 
Calculus became obsolete and serves merely as a historical artifact and provides an important 
example of a non-associative algebra, while the Kaczmarz method is an efficient technique 
with many prosperous years ahead.

I thank Dr. Danuta Ciesielska from Pedagogical University of Cracow for her help in supplying a copy 
of the bibliographical item [8]. My thanks also go to Professor Wojtek Czaja from the Norbert Wiener 
Center, University of Maryland, College Park, USA, for turning my attention to his recent work [11] 
and discussions on the Kaczmarz method. I am also grateful to an anonymous referee for comments, 
which improved precision of this paper.

Dedication: I dedicate this paper to my wife Joanna.
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