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THE NON-EXISTENCE OF THE FEJER‒RIESZ TYPE 
RESULT FOR SOME WEIGHTED BERGMAN SPACES 

IN THE UNIT DISC

O NIEISTNIENIU PEWNYCH OSZACOWAŃ 
TYPU FEJERA‒RIESZA W PRZESTRZENIACH BERGMANA 

Z WAGĄ W KOLE JEDNOSTKOWYM

A b s t r a c t

In this note, we consider the analogues of the classical Fejer‒Riesz inequality for some weighted 
Hilbert spaces of analytic functions in the unit disc. We prove that for some class of such spaces, 
the Fejer-Riesz inequality type results do not hold.
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S t r e s z c z e n i e

W artykule rozważa się nierówności podobne do klasycznej nierówności Fejera‒Riesza w prze-
strzeniach Hilberta funkcji analitycznych z wagą. Dowodzi się, że w pewnych klasach takich 
przestrzeni nie zachodzi odpowiednik nierówności Fejera‒Riesza.

Słowa  kluczowe:  nierówność Fejera‒Riesza, przestrzenie Bergmana funkcji analitycznych
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1.  Introduction

Let U be the unit disc in C. For functions in the space H 
2(U) the following well-known 

Fejer-Riesz inequality holds (see e.g. [3], p. 46):
If f ∈ H 

2(U), and f * denotes the radial boundary values of f on ∂U, f * being defined a.e. on 
∂U and L2-integrable with respect to the linear Lebesgue measure on ∂U, then

	 f x dx f e di( ) ( ) .2
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It follows from this inequality that in particular for every f ∈ H 
2(U) and every z ∈ ∂U,

	 f tz dt( ) .2
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(One should mention that the inequality (1) with 2 replaced by p also holds for all Hp-spaces 
with 1 ≤ p < +∞).

The space H 
2(U) can be viewed as one of some family of weighted Hilbert spaces 

of analytic functions in the unit disc in C; this family can be described as follows:
Given s > –1, set
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where m is planar Lebesgue measure in U. Such spaces, also called weighted Bergman 
spaces, were considered by many authors; see e.g. [1, 2, 7, 8, 9].
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 then one can prove 

by integrating in polar coordinates that
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E.g. for s = 0 we obtain A2,0(U) = L2H(U), the so called Bergman space of all holomorphic 
functions in U with
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If s ≤ –1, we have for n = 0, 1, 2, …

t t dtn s2 1 2

0

1
1+ − = +∞∫ ( ) .

Hence for s ≤ –1 the integral condition (3) gives the space consisting only of the zero function. 
But the series condition (4) yields non-zero Hilbert spaces of holomorphic functions in U. 
Therefore we set for s ≤ –1

	 A U f U
a
n

s n
s

n

2
2

1
0 1

, ( ) :
( )

.=
+

< +∞











+

=
∑holomorphic in
¥

	 (6)

Such definition of the space A2,s(U) for s ≤ –1 seems to be correct also by the fact that 

for s  =  –1 we obtain from (4) or (6) the condition ann
2

0
< +∞

=∑ ,
¥

 which is the well- 

-known condition for f to belong to the space H 
2(U); therefore the definition (6) gives  

A2,–1(U) = H 
2(U).

Having placed the space H 
2(U) as A2,–1(U) in the above described family of spaces A2,s(U), 

s ∈ R, we could ask whether the Fejer-Riesz inequality (1) valid for H 
2(U) = A2,–1(U) also has 

analogues for the other spaces A2,s(U), s ∈ R.
In [5] we have proved the result similar to (2) for the spaces A2,s(U) with s > 0:
Proposition 1. ([5], Theorem 1). Let s be a positive number. Suppose that f ∈ A2,s–1(U). 

Then for every z ∈ ∂U.

	 f tz t dts( ) ( ) .2 2
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As was already mentioned above, for s ≤ –1 the spaces A2,s(U) are defined by the series 
condition (6). Note that for s > –1 the condition (7) makes sense. Hence one can try to prove 
for s with –2 < s ≤ –1 the result similar to that in Proposition 1:

If s is a number with –2 < s ≤ –1, and f ∈ A2,s(U), i.e. if f z a zn
n

n
( ) =

=∑ 0

¥
 is holomorphic 

in U, it satisfies also according to (6)
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then for every z ∈ ∂U,
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In [6] we have proved only a weakened version of the aforementioned result; it is described 
in [6], conditions (10) and (11). For the convenience of the reader we recall it here.

Let f z a zn
n

n
( ) =
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¥
 satisfy (8). Let bk k{ } =0

¥  be a new sequence which is obtained 

from an n{ } =0
¥  in such a way that we delete all numbers an with an = 0 and then reorder 
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the remaining numbers an to obtain a new sequence ′{ } =ak k 0
¥  with ′ ′a a0 1³ ³;  we define 

then b a kk k= ′ =, , , .0 1  We can then also prove that
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The additional condition which we assume is as follows:
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We have proved in [6]:
Proposition 2. ([6], Proposition 2). Suppose that –2 < s ≤ –1. Let the function f, holomorphic 

in U, f z a zn
n

n
( ) ,=

=∑ 0

¥
 satisfy (8) (i.e. f ∈ A2,s(U)). Suppose also that the condition (10) 

holds. Then for every z ∈ ∂U

f tz t dts( ) ( ) .2 2 1

0

1
1− < ∞+∫

As mentioned above, we are still not able to prove Proposition 2 without assuming (10), 
although this conditions seems to be superfluous.

Consider now the spaces A2,s(U) with s ≤ –2. As mentioned above, in this case A2,s(U) 

is  defined by the series condition (6). Moreover, if  f ∈ A2,s(U), f z a zn
n
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and  the  coefficients an n{ } =0

¥  are non-negative, then f  (t) is bound away from zero say 

for  1
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1< <t ,  and so the integral condition (9) holds only for f equal zero. On the other 
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 and the coefficients an are  

non-negative, then as explained in [6], the expression
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Hence we have assumed in [6] that for s ≤ –2, the right analogue of the Fejer-Riesz type 
results, described in Propositions 1 and 2, would be the following:

If f is holomorphic in U, f z a z f A Un
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then one should have that
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As observed in [6], such a result is not true. Namely, we have proved the following:
Proposition 3. ([6], Proposition 4). Let s be a real number with s ≤ –2. Then there exists 

a holomorphic function f such that f z a zn
n

n
( ) =
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¥
 with an satisfying (11), but yielding 

divergent series (12).
The example of such a function, which therefore does not satisfy the Fejer-Riesz type 

result for s ≤ –2, is the function f z a zn
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In the present note we show that the same function does not satisfy the Fejer-Riesz type 
results mentioned above, in some sharper sense; we prove namely.

Proposition 4. Let s < –2 be given. Let the function f z a zn
n

n
( ) =
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¥
 be defined by (13). 
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 is divergent for some s  ≥  s, then the value 

σ = −
s
2
1  is the largest possible; we have the following result:
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Proposition 5. If s is a real number with s ≤ –2, and f ∈ A2,s(U), f z a zn
n
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Proof of Proposition 4. Fix s < –2. Note that we then have s s
< − < −
2
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1−  makes sense. With s as above let f be defined by (13), i.e.
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We have, for n ≥ 2,
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and this last sequence converges to 1; so the series in the right-hand side of (17) is convergent 
for every z ∈ U, and hence f is holomorphic in U.
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the series (15) with s = s is divergent were already proved in [6], Proposition 4. Therefore, 

let s s
< −σ£

2
1.  Then s = s + e with some 0 1

2
< − −ε£

s .  We have

	 a a
k l k l k k lk

k l
l s s s

,
/ /( ) ( ) ( ) log ( )=

+ + + − −∑ + +
=

+ + + +2
2 2 2 2

1
1

1
1 1 1

¥

σ ε llog
.

, lk l=
∑

2

¥

	 (18)

Consider the subseries of the series in the right-hand side of (18), consisting of terms for 
which k = 2, 3, … is arbitrary and l =2. In this way we obtain the series
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Since 0 1
2 2

2 1< − − + +ε ε£ £
s s, .then  Therefore, the series in the right-hand side of (19), 

as well as the series in (18), i.e. the series in (15), diverge.
Proof of Proposition 5. We have, by Hölder’s inequality,
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Note that since f ∈ A2,s (U), then by (6)
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Consider the second series in the right-hand side of (20). This series has the same behavior 
as the series
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The terms of this last series are decreasing with respect to product order, so we can apply 
to the series (21) the so-called Cauchy’s concentration principle (for double series). It follows 
from this that in order to verify that the series (21) is convergent, it is sufficient to prove that 
the series
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The terms of the second series in the right-hand side of (23) are estimated from above by
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Since σ > − >
s s
2
1 ,  then 2 + 2s – s > 0, and s – s > 0. Therefore both series in (24) 

are convergent. Hence the series in (22), as well as the second series in the right-hand side 
of (20) are convergent. This proves Proposition 5.

Note that if σ£
s
2
1− ,  then 2 + 2s – s ≤ 0, and the second series in the right-hand side 

of (24) diverges; therefore, we do not obtain by the above reasoning that the series in (16) 

is convergent for σ£
s
2
1− .

The author would like to express his gratitude to the Referee for having pointed out some mistakes 
in the previous version of the paper.
The Referee also asked about the zero sets of the functions from the spaces A2,s(U), or more generally, 
Ap,s(U), p > 0, for different values of s; in particular whether those zero sets depend on s. Up to 
now, we have not obtained the results in this direction, but it can be an interesting subject of further 
investigations.
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