Journal
Article title
Content
Full texts:
Title variants
Languages of publication
Abstracts
We present a new subspace clustering method called SuMC (Subspace Memory Clustering), which allows to efficiently divide a dataset D RN into k 2 N pairwise disjoint clusters of possibly different dimensions. Since our approach is based on the memory compression, we do not need to explicitly specify dimensions of groups: in fact we only need to specify the mean number of scalars which is used to describe a data-point. In the case of one cluster our method reduces to a classical Karhunen-Loeve (PCA) transform. We test our method on some typical data from UCI repository and on data coming from real-life experiments.
Publisher
Journal
Year
Volume
Physical description
Dates
published
2015
online
06 - 07 - 2016
Contributors
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-issn-2083-8476-year-2015-volume-24-article-6341