PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 24 |
Article title

Multilinear Filtering Based on a Hierarchical Structure of Covariance Matrices

Content
Title variants
Languages of publication
PL
Abstracts
PL
We propose a novel model of multilinear filtering based on a hierarchical structure of covariance matrices – each matrix being extracted from the input tensor in accordance to a specific set-theoretic model of data generalization, such as derivation of expectation values. The experimental analysis results presented in this paper confirm that the investigated approaches to tensor-based data representation and processing outperform the standard collaborative filtering approach in the ‘cold-start’ personalized recommendation scenario (of very sparse input data). Furthermore, it has been shown that the proposed method is superior to standard tensor-based frameworks such as N-way Random Indexing (NRI) and Higher-Order Singular Value Decomposition (HOSVD) in terms of both the AUROC measure and computation time.
Publisher
Year
Volume
24
Physical description
Dates
published
2015
online
06 - 07 - 2016
Contributors
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-issn-2083-8476-year-2015-volume-24-article-6338
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.