Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 15 | 27-46

Article title

Meteoryty marsjańskie – czy rzeczywiście pochodzą z Marsa?

Content

Title variants

EN
Martian meteorites – do they really come from Mars?

Languages of publication

Abstracts

EN
Although the concept of Martian meteorites was not yet known 50 years ago, today there are nearly 400 meteorites in this group. Only five of them were observed falling to Earth, the rest were found many years after their fall. They are all achondrites and, with a few exceptions, they all belong to the SNC (Shergotty-Nakhla-Chassigny) clan. At the end of the last century, the origin of these meteorites was hotly discussed and is intensively studied to this day. There is more and more evidence that their parent body is Mars. The main factor is the age of crystallization of SNC meteorites, repeatedly determined using various methods, mainly isotopic ones. This age does not exceed 2.4 billion years which is much less than the age of the Solar System, i.e. 4.6 billion years. Specific mineral and isotopic composition and proportion of gases trapped in the form of bubbles in the meteorite shock glass, identical in terms of noble gas content to the Martian atmosphere, also clearly points to Mars as the parent body of Martian meteorites. A significant contribution to the study of Martian meteorites is made by investigations carried out using Mössbauer spectroscopy based on iron, to determine the mineral composition of Martian meteorites and to compare the results with those obtained by spectrometers installed on Mars rovers during the MER – Mars Exploration Mission.

Year

Volume

15

Pages

27-46

Physical description

Dates

published
2024

Contributors

  • Uniwersytet Radomski im. Kazimierza Pułaskiego: Wydział Mechaniczny
  • Uniwersytet Warszawski: Wydział Biologii
  • Politechnika Warszawska: Wydział Fizyki

References

  • Agresti D.G., Dyar M.D., Schaefer M.W., 2006, Velocity scales for Mars Mossbauer data, Hyperfine Interactions, 170, s. 67–74. doi:10.1007/s10751-006-9472-5
  • Becker R.H., Pepin R.O., 1984, The case for a Martian origin of the shergottites: nitrogen and noble gases in EETA 79001, Earth and Planetary Science Letters, 69, s. 225–242.
  • Bogard D.D., Johnson P., 1983, Martian gases in an Antarctic meteorite, Science. 221, s. 651–654.
  • Clayton R.N., Mayeda T.K., 1996, Oxygen isotope studies of achondrites, Geochimica et Cosmochimica Acta, 60, s. 1999–2017.
  • Cohen B.E., Mark D.F., Cassata W.S., Kalnins L.M., Lee M.R., Smith C.L., Shuster D.L., 2023, Synchronising rock clocks of Mars’ history: Resolving the shergottite 40Ar/39Arage paradox, Earth and Planetary Science Letters, 621, s. 118373.
  • Dyar M.D., Schaefer M.W., 2004, Mössbauer spectroscopy on the surface of Mars: constraints and expectations, Earth and Planetary Science Letters, 218, s. 243–259.
  • Franchi I.A., Wright I.P., Sexton A.S., Pillinger C.T., 1999, The oxygen-isotopic composition of Earth and Mars, Meteoritics & Planetary Science, 34, s. 657–661.
  • Geiss J., Hess D.C.,1958, Argon-potassium ages and the isotopic composition of argon from meteorites, The Astrophysical Journal, 127, s. 224–236.
  • Gerling E.K., Pavlova T.G., 1951, Determination of the geological age of two stony meteorites by the argon method, Doklady Akademii Nauk S.S.S.R., 77, s. 85.
  • Hallis L.J., 2017, D/H ratios of the inner Solar System, Philosophical Transactions of the Royal Society A, 375, s: 20150390. doi:10.1098/rsta.2015.039
  • Head J.N., Melosh H.J., Ivanov B.A., 2002, Martian Meteorite Launch: High-Speed Ejecta from Small Craters, Science, 298, s. 1752–1756.
  • Hurnik B., Meteoryty z Marsa, w: Planeta Mars, Hurnik H., Fundacja Nicolaus Copernicus, 2018.
  • Jagoutz E., Wänke H., Sr and Nd isotopic systematics of Shergotty meteorite, Geochimica et Cosmochimica Acta, 50, s. 939–953.
  • Jakosky B. M., Brain D., Chaffin M., Curry, S., Deighan J., Grebowsky J., Halekas J., Leblanc F., Lillis R., 2018, Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time, Icarus, 315, s. 146–157.
  • Jull A.J.T., 2001, Terrestrial Ages of Meteorites. w: Peucker-Ehrenbrink B., Schmitz B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA, s. 241–266. doi:10.1007/978-1-4419-8694-8_14
  • Jull A.J.T., 2006, Terrestrial Ages of Meteorites, w: Meteorites and the Early Solar System II, Lauretta D.S. McSween Jr H.Y. (eds.), University of Arizona Press, Tucson, 943, s. 889–905.
  • Klingelhöer G., Morris R.V., Bernhardt B., Schröder C., Rodionov D.S., De Souza P.A. Jr., Yen A., Gellert R., Evlanov E.N., Zubkov B., Foh J., Bonnes U., Kankeleit E., Gütlich P., Ming D.W., Renz F., Wdowiak T., Squyres S.W., Arvidson R.E., 2004, Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer, Science, 306, s. 1740–1745. doi:10.1126/science.1104653
  • Klingelhöfer G., Morris R.V., De Souza Jr. P.A., Rodionov D., Schrode C., 2006, Two earth years of Mössbauer studies of the surface of Mars with MIMOS II, Hyperfine Interactions, 170, s. 169–177. doi:10.1007/s10751-007-9508-5
  • Kurokawa H., 2021, Hydrated crust stores Mars' missing water, Science, 372(6537), s. 27–28. doi:10.1126/science.abh4469
  • Lapen T.J., Righter M., Brandon A.D., Debaille V., Beard B.L., Shafer J.T., Peslier A.H., 2010, A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars, Science, 328, s. 347–351.
  • Laul J.C., Smith M.R., Schmitt R.A., 1983, ALHA 81005 Meteorite: Chemical evidence for Lunar Highland Origin, Geophysical Research Letters, 10, s. 825–828.
  • Martian Meteorite Compendium – NASA, 2022, https://curator.jsc.nasa.gov/antmet/mmc/introduction.cfm
  • McSween Jr. H.Y., Stolper E., 1980, Basaltic meteorites, Scientific American, 242, nr 6, s. 54–63.
  • McSween Jr. H.Y., 1985, SNC meteorites: Clues to Martian petrologic evolution?, Reviews of Geophysics, 23, s. 391–416.
  • McSween Jr. H.Y., Kawałek Czerwonej Planety, w: Od Gwiezdnego pyłu do planet, Prószyński i S-ka, Warszawa 1996, s. 122–139.
  • Meteoritical Bulletin Database, 2024-02-13: Meteoritical Bulletin: Search the Database (usra.edu)
  • Morris R.V., Klingelhöfer G., Bernhardt B., Schröder C., Rodionov D.S., De Souza P.A. Jr., Yen A., Gellert R., Evlanov E.N., Foh J., Kankeleit E., Gütlich P., Ming D.W., Renz F., Wdowiak T., Squyres S.W., Arvidson R.E., 2004, Mineralogy at Gusev Crater from the Mössbauer Spectrometer on Spirit Rover, Science 305, s. 833–836. doi:10.1126/science.1100020
  • Nyquist L.E., Bogard D.D., Shih C.-Y., Greshake A., Stöffler D., Eugster O., 2001, Ages and geologic histories of Martian meteorites, Space Science Reviews, 96, s. 105–164.
  • Owen T., Biemann K., Rushneck D.R., Biller J.E., Howarth D.W., Lafleur A.L., 1977, The composition of the atmosphere at the surface of Mars, Journal of Geophysical Research, 82, s. 4635–4639.
  • Papike J.J., Karner J.M., Shearer C.K., Burger P.V., 2009, Silicate mineralogy of Martian meteorites, Geochimica et Cosmochimica Acta, 73, s. 7443–7485.
  • Pepin, R.O., 1991, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles, Icarus 92, s. 2–79.
  • Schulz T., Povinec P.P., Ferričre L., Jull A.J.T., Kováčik A., Sýkora I., Tusch J., Münker C., Topa D., Koeberl C., 2020, The history of the Tissint meteorite, from its crystallization on Mars to its exposure in space: New geochemical, isotopic, and cosmogenic nuclide data, Meteoritics & Planetary Science, 55, s. 294–311. doi: 10.1111/maps.13435
  • Stephant A., Garvie L.A.J., Mane P., Hervig R., Wadhwa M., 2018, Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations, Scientific Reports, 8, 12385. doi:10.1038/s41598-018-30807-w
  • Treiman A.H., Gleason J.D., Bogard D.D., 2000, The SNC meteorites are from Mars, Planetary and Space Science, 48, s. 1213–1230.
  • Udry A., Howarth G.H., Herd C.D.K., Day J.M.D., Lapen T.J., Filiberto J., 2020, What Martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523. doi:10.1029/2020JE006523
  • Vieira V.W.A., Costa T.V.V., Jensen H.G., Knudsen J.M., Olsen M., 1986, Oxidation State of Iron in SNC Meteorites as Studied by Mössbauer Spectroscopy, Physica Scripta, 33, s. 180–186.
  • Wiens R.C., Becker R.H., Pepin R.O., 1986, The case for a Martian origin of the shergottites, II. Trapped and indigenous gas components in EETA 79001 glass, Earth and Planetary Science Letters, 77, s. 149–158.
  • Wojnarowska A., 2008, Mössbauerowskie badania porównawcze próbek skał ziemskich i marsjańskich. Praca magisterska, Politechnika Warszawska, Warszawa 2008.
  • Wojnarowska A., Gałązka-Friedman J. Bakun-Czubarow N., 2008, Weathering of Martian and Earth surface studied by Mössbauer spectroscopy, Hyperfine Interactions, 186, s. 173–180. doi:10.1007/s10751-008-9850-2
  • Wong M.H., Atreya S.K., Mahaffy P.N., Franz H.B., Malespin C., Trainer M.G., Stern J.C., Conrad P.G., Manning H.L.K., Pepin R.O., Becker R.H., McKay C.P., Owen T.C., Navarro-González R., Jones J.H., Jakosky B.M., Steele A., 2013, Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity’s mass spectrometer, Geophysical Research Letters, 40, s. 6033–6037. doi:10.1002/2013GL057840.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
30146480

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2024-volume-15-article-fd47743b-13b7-39f8-83f1-44b3feb10f5b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.