Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 15 | 154-177

Article title

‘Aegean’ – kolisty obszar w południowej Europie – jego geologia a największe kratery na Ziemi

Authors

Content

Title variants

EN
’Aegean’ – a circular structure in southern Europe – its geology versus the largest craters on Earth

Languages of publication

Abstracts

EN
Analysis of online available references suggests that circular characteristics observed around Aegean Sea in southern Europe may represent protobasin class of impact craters, which small central peak and surrounded peak ring appear to be formed by the Cyclades. Thinner crust, upper mantle deformation (uplift), recognition of basin in upper mantle re-filled with rocks having lower density than surrounding mantle, central Aegean Sea area free of sediments and almost perfect circular anomaly of density with diameter over 500 km are only few arguments which may indicate its real origin. The strongest fact standing for hypothesis of impact is presence of deep, lithospheric fracture zones with both circular and radial character, detected up to the distance of ~516 km from common geometric point of all rings (providing estimated diameter of the largest circle over 1000 km). Existence of pseudotachylite veins and breccias in central Cyclades are contributory evidence. Mélange covered by Fe-Ni rich ores in Jurassic/Cretaceous boundary, if related to impact, may give clue to explanation of localized in Europe Tithonian mass extinction event 145 Ma. However, pseudotachylites and breccias can be produced by endogenic processes (e.g., plate tectonics). A further research is required to find evidence of passage of shock wave through target rocks.

Year

Volume

15

Pages

154-177

Physical description

Dates

published
2024

Contributors

References

  • Alvarez L.W., Alvarez W., Asaro F., Michel H.V., 1980, Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, 208 (4448), s. 1095–1108.
  • Baker D., Head J., Schon S.C., Ernst C., Prockter L., Murchie S., Denevi B., Solomon S., Strom R., 2011, The transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin formation models, Planetary and Space Science, 59.
  • Brzezińska-Wójcik T, Tsermegas I., 2007, Wpływ geodynamiki płyt litosfery na rozmieszczenie i cechy geomorfologiczne wysp Morza Egejskiego, Warsztaty Geomorfologiczne, Grecja – 26.04–06.05.2007 r.
  • Buchner E., 2017, An approach towards the projectile trajectory during the oblique Steinheim meteorite impact by the interpretation of structural crater features and the distribution of shatter cones, Geological Magazine, 155.
  • Bulle F., Bröcker M., Gärtner C., Keasling A., 2010, Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece, Lithos, 117, s. 61–81.
  • Cavosie A.J., Quintero R.R., Radovan H.A., Moser D.E., 2010, A record of ancient cataclysm in modern sand: Shock microstructures in detrital minerals from the Vaal River, Vredefort Dome, South Africa, GSA Bulletin, v. 122, no. 11/12, pp. 1968–1980.
  • Christeson G.L., Collins G.S., Morgan J.V., Gulick S.P.S., Barton P.J., Warner M. R., 2009, Mantle deformation beneath the Chicxulub impact crater, Earth and Planetary Science Letters, 284(1–2), s. 249–257.
  • Clarey T.L., 2017, Do the Data Support a Large Meteorite Impact at Chicxulub?, Answers Research Journal, 10, s. 71–88.
  • Collins G.S., Patel N., Davison T.M. i in., 2020, A steeply-inclined trajectory for the Chicxulub impact. Nat Commun 11, 1480 (2020).
  • Connors M., Hildebrand A., Pilkington M., Ortiz C., Chavez R., Urrutia Fucugauchi J., et al., 1996, Yucatan karst features and the size of Chicxulub crater, Geophysical Journal International, 127, s. 11–14.
  • Doglioni C., Agostini S., Crespi M., Innocenti F., Manetti P., Riguzzi F., Savascin Y., 2002, On the extension in Western Anatolia and the Aegean Sea, w: Rosenbaum G., Lister G.S., Reconstruction of the Evolution of the Alpine-Himalayan Orogen, Journal of the Virtual Explorer, 8, s. 169–184.
  • Dogru, F., Ankaya P.O., Gönenç T. & Yildiz H., 2018, Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field model, Bollettino di Geofisica Teorica ed Applicata, 59, s. 135–160.
  • Economou-Eliopoulos M., Laskou M., Eliopoulos D. Megremi I. Kalatha S., Eliopoulos G., 2021, Origin of Critical Metals in Fe–Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk, Minerals, 11, s. 1009.
  • French B.M., 1998, Traces of catastrophe. a handbook of shock-metamorphic effects in terrestrial meteorite impact structuress, LPI, Contribution No. 954, Houston, Texas.
  • Glikson A.Y., Yeates A.N., 2022, Geophysics and origin of the Deniliquin multiple-ring feature, Southeast Australia, Tectonophysics, 837.
  • Glikson A., 2023, An asteroid impact origin of the Hirnantian (end-Ordovician) glaciation and mass extinction, Gondwana Research, 118.
  • Grieve R., Therriault A., 2000, Vredefort, Sudbury, Chicxulub: Three of a Kind?, Annual Review of Earth and Planetary Sciences, 28(1), s. 305–338.
  • Humm D.C., i in., 2015, Flight Calibration of the LROC Narrow Angle Camera, Space Science Reviews Online, s. 1–43.
  • James S., R. Chandran S., Santosh M., A.P. Pradeepkumar, Praveen M.N., Sajinkumar KS., 2021, Meteorite impact craters as hotspots for mineral resources and energy fuels: A global review, Energy Geoscience, 3.
  • John B., Howard K., 1995, Rapid extension recorded by cooling-age patterns and brittle deformation, Naxos, Greece, Journal of Geophysical Research, 100, s. 9969–9980.
  • Kapsiotis A., Grammatikopoulos T., Tsikouras B., Hatzipanagiotou K., Zaccarini F., Garuti G., 2010, Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): Evidence for progressively elevated fAs conditions in the upper mantle sequence, Mineralogy and Petrology, 101, s. 129–150.
  • Kassaras I, Kapetanidis V, Ganas A, Tzanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P., 2020, The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation, Geosciences, 2020, 10(11):447.
  • Koeberl C., 2002, Mineralogical and geochemical aspects of impact craters, Mineralogical Magazine, October 2002, vol. 66(5), s. 745–768.
  • Kaiho K., 2022, Extinction magnitude of animals in the near future, Scientific Reports, 12, 19593.
  • Kuhlemann J., Dunkl W., Frisch W., Kazmer M., Schmiedl G, 2004, Miocene siliciclastic deposits of Naxos Island: Geodynamic and environmental implications for the evolution of the southern Aegean Sea (Greece), Detrital Thermochronology, 378.
  • Mahanti P., i in, 2015, Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera, Space Science Reviews Online, s. 1–38.
  • Makris J., Papoulia J., Yegorova T., 2013, A 3–D density model of Greece constrained by gravity and seismic data, Geophysical Journal International, 194, s. 1–17.
  • McClusky S., i in., 2000, Global Positioning System constraints on plate kinematic and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, 105, B3, s. 5695–5719.
  • Naghizadeh M., 2021, Seismic reflection imaging of the eastern Sudbury structure, 1266–1270.
  • Ortiz-Aleman C., Martin R., Urrutia-Fucugauchi J., del Castillo M.O., Nava-Flores M., 2021, Imaging the Chicxulub Central Crater Zone from Large-Scale Seismic Acoustic Wave Propagation and Gravity Modeling, Pure and Applied Geophysics, 178, 1, s. 55–77.
  • Osinski G., Spray J., 2005, Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 40, s. 1813–1834.
  • Paulo A., Strzelska-Smakowska B., 2016, Złoża rud niklu w redeponowanych laterytach w Grecji, ich wykorzystanie i zagospodarowanie pogórnicze, Przegląd Geologiczny, 64, (3), s. 159–165.
  • Peillod A., Ring U., Glodny J., Skelton A., 2017, An Eocene/Oligocene blueschist-/greenschist facies P–T loop from the Cycladic Blueschist Unit on Naxos Island, Greece: Deformation-related re-equilibration vs. thermal relaxation, Journal of Metamorphic Geology, 35, s. 805–830.
  • Robinson M.S., i in., 2010, Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview, Space Science Reviews, 150, s. 81–124.
  • Robinson M.S., 2010, Lunar Reconnaissance Orbiter Camera Experimental Data Record, LRO-L-LROC-2-EDR-V1.0, NASA Planetary Data System.
  • Sharpton V.L., Grieve R.A.F., Thomas M.D., Halpenny J.F., 1987, Horizontal gravity gradient: An aid to the definition of crustal structure in North America, Geophysical Research Letters, 14, 8, s. 808–811.
  • Sideridis A., Zaccarini F., Koutsovitis P., Grammatikopoulos T., Tsikouras B., Garuti, G., Hatzipanagiotou K., 2021, Chromitites from the Vavdos ophiolite (Chalkidiki, Greece): Petrogenesis and geotectonic settings; constrains from spinel, olivine composition, PGE mineralogy and geochemistry, Ore Geology Reviews, 137, s. 104289.
  • Speyerer E.J., i in., 2012, In-Flight Geometric Calibration of the Lunar Reconnaissance Orbiter Camera, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B4, s. 511–516.
  • Stouraiti C., Pantziris I., Vasilatos C., Kanellopoulos C., Mitropoulos P., Pomonis P., Moritz R., Chiaradia M., 2017, Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors, Geosciences, 7.
  • Thanassoulas C., Klentos V., 1999, Earthquake prediction based on electrical signals recorded on ground surface. An integrated methodology answering on „where”, „when” and „of what magnitude” a large EQ will occur, www.earthquakeprediction.gr
  • Telecka M., 2014, Znaczenie ekonomiczne kraterów meteorytowych (Economic importance of meteorite craters), Przegląd Geol., 62(5), 2014, s. 240–244.
  • Tennant, J., Mannion P., Upchurch P., 2016, Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval, Nature Communications, 7.
  • Tirel C., Gueydan F., Tiberi C., Brun J.P., 2004, Aegean crustal thickness inferred from gravity inversion. Geodynamical implications, Earth and Planetary Science Letters, 228, s. 267–280.
  • Ubide T., Guyett P.C., Kenny G.G., O’Sullivan E.M., Ames D.E., Petrus J.A., Kamber B.S., 2017, Protracted volcanism after large impacts: Evidence from the Sudbury impact basin, Journal of Geophysical Research: Planets, 122(4), s. 701–728.
  • Valeton I., Biermann M., Reche R., Rosenberg F., 1987, Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks, Ore Geology Reviews 2, s. 359–404.
  • Walesiak T., 2020, Wykorzystanie danych Numerycznego Modelu Terenu do poszukiwania i wstępnej identyfikacji struktur impaktowych, Acta Societatis Metheoriticae Polonorum, 11, s. 110–124.
  • Walesiak T., 2021, Kratery Morasko – obrona hipotezy ukośnego impaktu w kontekście dostępnej wiedzy i wyników badań, Acta Societatis Metheoriticae Polonorum, 12, s. 108–128.
  • Zlatkin O., Avigad D., Gerdes A., 2018, New detrital zircon geochronology from the Cycladic Basement (Greece): Implications for the Paleozoic accretion of peri-Gondwanan terranes to Laurussia, Tectonics, 37, s. 4679–4699.
  • Council for Geoscience: https://www.geoscience.org.za/cgs/systems/publications/vredefort-geophysical-test-site/
  • NASA: https://earthobservatory.nasa.gov/images/92689/vredefort-crater https://earthobservatory.nasa.gov/images/148844/sudbury-impact-structure https://earthobservatory.nasa.gov/images/3267/relief-map-yucatan-peninsula-mexico
  • NOAA: NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-Second Global Relief Model. NOAA National Centers for Environmental Information. doi:10.25921/fd45-gt74 [dostęp 2024-03-23].
  • PAASC – Earth Impact Database http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Criteria.html http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Diametersort.html http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Chicxulub.html http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Sudbury.html http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Vredefort.html
  • TessaDEM (near–global 30–meter Digital Elevation Model (DEM)): https://en-us.topographic-map.com/
  • Wikipedia: https://en.wikipedia.org/wiki/Chicxulub_crater

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
30146482

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2024-volume-15-article-fa744456-d249-38d7-95a5-3e413c4d2ca5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.