Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 15 | 116-128

Article title

Średni ciężar atomowy, średnia objętość i promień atomu chondrytu Creston (L5/6)

Authors

Content

Title variants

EN
Mean atomic weight, mean volume and radius of atom of Creston (L5/6) chondrite

Languages of publication

Abstracts

EN
Mean atomic weight Amean, mean volume and mean radius of atom of Creston ordinary chondrite (L5/6 S4 W0) felt in 2015 in Creston near Paso Robles, California has been calculated using literature data on chemical composition of the meteorite (Jenniskens et al. 2019). The aim of the studies was to determine Amean, Vatom, and Ratom values for this new meteorite, and compare the data with the values obtained for two other ordinary chondrites: Ensisheim (LL6), and Jezersko (H4). Calculations were conducted for the whole rock, for silicates, and for Fe, Ni metal of Creston, and Ensisheim chondrites.
It was shown that the mean atomic weight of the whole rock of Creston chondrite Amean = 24.06. Creston’s silicates revealed the value: Ameansi = 21.92, and Creston’s Fe,Ni metal: Ameanmet = 56.25.
It was calculated that the average volume of the Creston’s atom Vatom = 1.111·10–29 m3 (sample CR05), and 1.115·10–29 m3 (sample CR06). Average radius of Creston’s atom: Ratom = 138.5 pm, mean radius of atom of Creston silicates: Ratomsi = 138 pm, and mean radius of atom of Creston metal: Ratommet = 142 pm.

Year

Volume

15

Pages

116-128

Physical description

Dates

published
2024

Contributors

  • Politechnika Łódzka: Centrum Nauczania Matematyki i Fizyki

References

  • Altunayar-Unsalan C., Unsalan O., Szurgot M. A., Wach R.A., 2021, Specific heat and thermal history of the Sariçiçek howardite, Meteoritics & Planetary Science, 56, s. 2103–2117.
  • Anderson D.L., 1989, Theory of the Earth, Blackwell Scientific Publications, London.
  • Anderson D.L., Kovach R.L., 1967, The composition of the terrestrial planets, Earth and Planetary Science Letters, 3, s. 19–24.
  • Anderson D.L., Jordan T., 1970, The composition of lower mantle, Physics of the Earth and Planetary Interiors, 3, s. 23–35.
  • Bartoschewitz R., Appel P., Barrat J.-A., Bischoff A., Caffee M.W., Franchi, I.A. Gabelica Z., Greenwood R.C., Harir M., Harries D., Hochleitner R., Hopp J., Laubenstein M., Mader B., Marques R., Morlok A., Nolze G., Prudencio M.I., Rochette P., Ruf A., Schmitt-Kopplin P., Seemann E., Szurgot M., Tagle R., Wach R.A., Welten K.C., Weyrauch M., Wimmer K. (The Braunschweig Meteorite Consortium), 2017, The Braunschweig meteorite – a recent L6 chondrite fall in Germany, Geochemistry, 77, s. 207–224.
  • Beech M., Coulson, I.M., Nie, W., McCausland, P., 2009, The thermal and physical characteristics of the Gao-Guenie (H5) meteorite, Planetary and Space Science, 57, s. 764–770.
  • Birch F., 1961, Composition of the Earth’s Mantle, Geophysical Journal International, 4, s. 295–311.
  • Britt D.T., Consolmagno, G.J., 2003, Stony meteorite porosities and densities: a review of the data through 2001, Meteoritics & Planetary Science, 38, s. 1161–118.
  • Consolmagno G.J., Macke, R.J., Rochette, P., Britt, D.T., Gattacceca, J., 2006, Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers, Meteoritics & Planetary Science, 41, s. 331–342.
  • Consolmagno G.J., Britt D.T., Macke R.J., 2008, The significance of meteorite density and porosity, Chemie der Erde – Geochemistry, 68, s. 1–29.
  • Flynn G.J., Consolmagno G.J., Britt D. T., Brown P., Macke R.J., 2018, Physical properties of the stone meteorites: Implications for the properties of their parent bodies, Chemie der Erde, 78, s. 269–298.
  • Harvey T.A., MacArthur J.L., Joy K.H., Sykes D., Almeida N.V., Jones R.H., 2023, Nondestructive determination of the physical properties of Antarctic meteorites: Importance for the meteorite-parent body connection, Meteoritics & Planetary Science 58, s. 1707–1746.
  • Jenniskens P., Utas J., Yin Q-Z., Matson R.D., Fries M., J. Howell A., Free D., Albers J., Devillepoix H., Bland P., Miller A., Verish R., Garvie L.A., Zolensky M.E., Ziegler K., Sanborn M.E., Verosub K.L., Rowland D.J., Ostrowski D.R., Bryson K., Laubenstein M., Zhou Q., Li Q-L., Li X-H., Liu Y., Tang G-Q., Welten K., Caffee M.W., Meier M.M.M., Plant A.A, Maden C., Busemann H., Granvik M. (The Creston Meteorite Consortium), 2019, The Creston, California, meteorite fall and the origin of L chondrites, Meteoritics & Planetary Science, 54, s. 699–720.
  • Kiefer W.S., Macke R.J., Britt D.T., Irving A.J., Consolmagno G.J., 2012, The density and porosity of lunar rocks, Geophysical Research Letters, 39, L07201.
  • Kohout T., Kletetschka, G., Elbre, T., Adachi, T., Mikula, V., Pesonen, L.J., Schnabl, P., Slechta, S., 2008, Physical properties of meteorites – applications in space missions to asteroids, Meteoritics & Planetary Science, 43, s. 1009–1020.
  • Łuszczek K., Wach, R.A. 2014. NWA 6255 meteorite – Thermophysical properties of interior and the crust, Meteorites, 3, s. 33–44.
  • Macke R.J., 2010, Survey of meteorite physical properties: density, porosity and magnetic susceptibility, Ph.D. Thesis, University of Central Florida, Orlando.
  • Macke R.J., Consolmagno, G.J., Britt, D.T., Hutson, M.L., 2010, Enstatite chondrite density, magnetic susceptibility, and porosity, Meteoritics & Planetary Science, 45, s. 1513–1526.
  • Macke R.J., Britt, D.T., Consolmagno, G.J., 2011, Density, porosity, and magnetic susceptibility of achondritic meteorites, Meteoritics & Planetary Science, 46, s. 311–326.
  • Macke R.J., Opeil C. P., Consolmagno, G.J., 2019, Heat capacities of ordinary chondrite falls below 300 K, Meteoritics & Planetary Science, 54, s. 2729–2743.
  • Maj S., 1998, Phonon thermal conductivity of geomaterials: Relationship to the density and mean atomic weight, Acta Geophysica Polonica, 46, s. 415–425.
  • Mat Web – Materials Property Database, https://matweb.com
  • Opeil C.P., Consolmagno G.J., Safarik D.J., Britt D.T., 2012, Stony meteorite thermal properties and their relationship to meteorite chemical and physical states, Meteoritics & Planetary Science, 47, s. 319–329.
  • Opeil C.P., Britt D.T., Macke, R.J., Consolmagno G.J., 2020, The surprising thermal properties of CM carbonaceous chondrites, Meteoritics & Planetary Science, 55, s. E1-E20.
  • Ostrowski D., Bryson K., 2019, The physical properties of meteorites, Planetary and Space Science. doi:10.1016/j.pss.2018.11.003
  • Parikov L.N., Yurchenko Yu. F., Thermal Properties of Metals and Alloys, Naukova Dumka, Kiev, 1985, pp. 358, 359 (in Russian).
  • Petrovic J.J., 2001, Review mechanical properties of meteorites and their constituents, Journal of Materials Science, 36, s. 1579–1583.
  • Przylibski T.A., 2016, Chondryt Sołtmany, Acta Societatis Metheoriticae Polonorum, 7, s. 93–122.
  • Rahm M., Hoffmann R., Ashcroft N. W., 2016, Atomic and Ionic Radii of Elements 1–96, Chemistry A European Journal, 22, s. 14625–14632.
  • Ringwood A.E., 1966, Chemical evolution of the terrestrial planets, Geochimica et Cosmochimica Acta, 30, s. 41–104.
  • Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G.J., Folco L., Gattacceca J., Osete L.M., Pesonen L., 2003, Magnetic classification of stony meteorites: 1. Ordinary chondrites, Meteoritics & Planetary Science, 38, s. 251–268.
  • Rochette P., Gattacceca J., Bonal L., Bourot-Denise M., Chevrier V., Clerc J.P., Consolmagno G.J., Folco L., Gounnelle M., Kohout T., Pesonen L., Quirico E., Sagnotti L., Skripnik A., 2008, Magnetic classification of stony meteorites: 2. Non-ordinary chondrites, Meteoritics & Planetary Science, 43, s. 959–980.
  • Rochette P., Gattacceca J., Lewandowski M., 2012, Magnetic classification of meteorites and application to the Sołtmany fall, Meteorites, 2, s. 67–71.
  • Soini T.-J., Kukkonen I. T., Kohout T., Luttinen A., 2020, Thermal and porosity properties of meteorites: A compilation of published data and new measurements, Meteoritics & Planetary Science, 55, s. 402–425.
  • Szurgot M., 2015a, Mean atomic weight of Earth, Moon, Venus, Mercury and Mars. Effect of mass of cores and density of planets, Lunar and Planetary Science Conference XXXXVI, #1536.pdf
  • Szurgot M., 2015b, Core mass fraction and mean atomic weight of terrestrial planets, moon, and protoplanet Vesta, Comparative Tectonics and Geodynamics of Venus, Earth, and Rocky Exoplanets Workshop. #5001.pdf
  • Szurgot M., 2015c, Średni ciężar atomowy chondrytu Sołtmany, chondrytów L6 i minerałów pozaziemskich, Acta Societatis Metheoriticae Polonorum, 6, s. 107–128.
  • Szurgot M., 2015d, Mean atomic weight of Chelyabinsk and Olivenza LL5 chondrites, Meteoritics & Planetary Science, 50 (S1), #5008.pdf
  • Szurgot M., 2015e, Mean atomic weight of Pułtusk meteorite and H chondrites, Meteoritics & Planetary Science, 50 (S1), #5013.pdf
  • Szurgot M., 2016a, Mean atomic weight of L/LL and H/L intermediate ordinary chondrites, Lunar and Planetary Science Conference 47th, Abstract #2180.
  • Szurgot M., 2016b, Mean atomic weight of ordinary chondrites. Effect of petrologic type, Meteoritics & Planetary Science, 51(S1), #6021.pdf
  • Szurgot M., 2016c, Mean atomic weight of Białystok eucrite, Łowicz mesosiderite, and Baszkówka chondrite, Meteoritics & Planetary Science, 51 (S1), #6005.pdf
  • Szurgot M., 2016d, Średni ciężar atomowy chondrytów LL5: Siena, Hautes Fagnes i NWA 7915, Acta Societatis Metheoriticae Polonorum, 7, s. 133–143.
  • Szurgot M., 2017a, Mean atomic weight of Earth and enstatite chondrites, Lunar and Planetary Science Conference 48th, Abstract #1130.
  • Szurgot M., 2017b, Mean atomic weight of chondrules and matrices in Semarkona, Allende and Sharps meteorites, LPI Contrib. No. 1963, Workshop on Chondrules and Protoplanetary Disk, Abstract #2002.
  • Szurgot M., 2017c, Średni ciężar atomowy chondrytu Ensisheim (LL6), Acta Societatis Metheoriticae Polonorum, 8, s. 110–122.
  • Szurgot M., 2017d, Mean atomic weight of Stubenberg meteorite, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6005.
  • Szurgot M., 2017e, Uncompressed density of the Moon, lunar mantle and core, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6007.
  • Szurgot M., 2017f, Relationship between density of planetary materials and iron to silicon ratio. Grain density for ordinary chondrites, and uncompressed density for Moon, Earth, Venus, and Mars, Meteoritics & Planetary Science, 52 (S1), #6008.pdf
  • Szurgot M., 2017g, Dependence of density on iron to silicon ratio for extraterrestrial matter, 59 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 145–146.
  • Szurgot M., 2017h, Relationship between density of chondrules and Fe/Si ratio, 59 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 147–148.
  • Szurgot M., 2018a, Mean atomic weight of ordinary chondrites from Spanish falls, LPI Contrib. No. 2083, Lunar and Planetary Science Conference 49th, Abstract #1039.
  • Szurgot M., 2018b, Mean atomic weight of L’Aigle chondrite, LPI Contrib. No. 2067, Meteoritics & Planetary Science, 53 (S3), #6001.pdf
  • Szurgot M., 2018c, Mean atomic weight and grain density of Košice chondrite, LPI Contrib. No. 2067, Meteoritics & Planetary Science, 53 (S1), #6002.pdf
  • Szurgot M., 2018d, Średni ciężar atomowy chondrytu Vicęncia (LL3.2), Acta Societatis Metheoriticae Polonorum, 9, s. 126–144.
  • Szurgot M., 2019a, Średni ciężar atomowy i gęstość ziaren chondrytu Jezersko (H4), Acta Societatis Metheoriticae Polonorum, 10, s. 140–159.
  • Szurgot M., 2019b, Relationship between grain density and mean atomic weight for lunar materials. Predicting grain density of lunar meteorites, LPI Contrib. No. 2132, Lunar and Planetary Science Conference 50th, Abstract #1165.
  • Szurgot M. A., 2020a, Ciepło właściwe i ciepło atomowe chondrytu Jezersko, Przegląd Geologiczny, 68, s. 54–59.
  • Szurgot M., 2020b, Średni ciężar cząsteczkowy chondrytu Jezersko (H4). Promień i objętość atomu i cząsteczki chondrytu, Acta Societatis Metheoriticae Polonorum, 11, s. 98–109.
  • Szurgot M.A, 2021a, Mean atomic weight, grain density, and porosity of Flensburg unique carbonaceous chondrite, 84th Annual Meeting of the Meteoritical Society (2021), LPI Contribution No. 2609, Meteoritics & Planetary Science, 56 (S1), #6006.pdf
  • Szurgot M.A, 2021b, Mean atomic weight, grain density, and porosity of Cavezzo chondrite, 84th Annual Meeting of the Meteoritical Society (2021), LPI Contribution No. 2609, Meteoritics & Planetary Science, 56 (S1), #6009.pdf
  • Szurgot M. A., 2021c, O przewodności cieplnej meteorytu Jezersko, Nafta-Gaz, nr 1, s. 10–19.
  • Szurgot M.A., 2022, Mean atomic weight and grain density of interior and fusion crust of Alessandria chondrite, Lunar and Planetary Science Conference 53rd, Abstract #2563.
  • Szurgot M.A, 2023a, Modal composition, mean atomic weight, and grain density of Antonin chondrite, 86th Annual Meeting of the Meteoritical Society (2023), LPI Contribution No. 2990, Meteoritics & Planetary Science, 58 (S1), #6002.pdf
  • Szurgot M.A, 2023b, Prediction of grain density, mean atomic weight, and iron to silicon ratio of Santa Filomena chondrite by magnetic susceptibility, 86th Annual Meeting of the Meteoritical Society (2023), LPI Contribution No. 2990, Meteoritics & Planetary Science, 58 (S1), #6003.pdf
  • Szurgot M. A., 2024, Effect of porosity on thermal inertia of ordinary chondrites. Lunar and Planetary Science Conference 55th, Abstract #2562.
  • Szurgot M., Wach, R.A., Przylibski, T. 2012. Thermophysical properties of Sołtmany meteorite, Meteorites 2, s. 53–65.
  • Szurgot M., Wach R.A., Bartoschewitz R., 2017, Mean atomic weight of Braunschweig meteorite, Meteoritics & Planetary Science, 52 (S1), #6002.pdf.
  • Szurgot M., Wach R.A., Unsalan O., Altunayar-Unsalan C., 2020, Mean atomic weight and thermophysical properties of Çanakkale meteorite, Lunar and Planetary Science Conference 51st, Abstract #1287.
  • Szurgot M., Wach R.A., Unsalan O., Altunayar-Unsalan C., 2021, Mean atomic heat of Sariçiçek howardite and Bursa L6 chondrite, Lunar and Planetary Science Conference 52nd, LPI Contribution No. 2548, Abstract #1108.
  • Szurgot M.A., Wach R.A., Unsalan O., Altunayar-Unsalan C., 2022, The thermal conductivity of Bursa chondrite, 85th Annual Meeting of the Meteoritical Society (2022), LPI Contribution No. 2695, Meteoritics & Planetary Science, 57 (S1), #6099.pdf
  • Wilkison S.L., Robinson, M.S., 2000, Bulk density of ordinary chondrite meteorites and Implications for asteroidal internal structure, Meteoritics & Planetary Science, 35, s. 1203–1213.
  • Yomogida K., Matsui T., 1983, Physical properties of ordinary chondrites, Journal of Geophysical Research Solid Earth, 88, s. 9513–9533.
  • https://matweb.com, Mat Web – Materials Property Database

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
30146488

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2024-volume-15-article-b0018adb-9f41-330a-8675-bec7cbc57be9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.