Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 12 | 129-148

Article title

Przegląd najważniejszych prac dotyczących próby ustalenia daty spadku meteorytów oraz wieku kraterów Morasko

Authors

Content

Title variants

EN
Review of most important papers regarding attempts to determine the date of Morasko meteorite fall and age of the craters

Languages of publication

PL

Abstracts

EN
One of criteria suggesting impact origin may be recognition of extraterrestrial matter inside or around suspected cavities. In case of Morasko some dating results throw doubt on link between craters and meteorites. Conclusion of some past research papers was that cavities were formed about 5 ka BP (e.g. palynological investigation, luminescence dating), while more or less facts testify fall in the Middle Ages (e.g. “young” charcoal pieces in crust of meteorites or shrapnel stuck in the roots of old tree). In this paper we perform comprehensive analysis of each result and check if there exists alternative explanation. During past palynological investigation, there were examined two craters. It was concluded that beginning of accumulation of sediments in smaller cavity started 5500–5000 BP. However, pollen spectrum for largest basin was different suggesting younger age. The problem is that according to bathymetric maps, samples could be collected from inner uplift (similar feature was observed inside Porzadzie and Jaszczulty, unconfirmed impact structures yet). If we compare profiles from craters with recent research (palynological study supported by radiocarbon dating) on sediments in Lake Strzeszynskie (6 km SW from Morasko) pollen spectrum seems to be similar more to results dated to <1000 BP. Especially percentage of non-arboreal pollen for both examined Morasko craters is much higher (5 times greater than it was for layer dated to 5 ka BP in Lake Strzeszynskie). Possibility of short disturbance (related to impact) cannot be excluded, but in such case any time of event should be taken into account. For small lakes (like those filling the craters) also local conditions could play important role. Analysis of luminescence dating may also discuss past conclusions. OSL method applied for samples taken from the thin layer of sand in the bottom of largest structure (under 3,9 m of organic sediments filling the crater) suggested age 5–10 ka BP for 24 aliquots. Same number of samples (24) revealed age 0–5 ka BP (13 samples with age <3 ka BP including several younger than 1 ka BP). Older dates can be explained by partial or even no zeroing, but last contact with light (zeroing signal) of sand grains (excavated from depth of almost 4 meters under organic matter) seems that might occur only during (or shortly after) the impact. It is difficult to find convincing arguments, which can undermine initial radiocarbon dating giving age <1 ka BP for 7 of 9 samples taken from the bottom layer of organic sediments from three Morasko craters. Same issue may exist with small charcoal pieces with age <2 ka BP (and several dated to ~700 BP) discovered deep in sinter-weathering crust of meteorites. Study of charcoal particles excluded their origin during post-sedimentary processes (like forest fire) unless meteorite fragments were laying directly on the surface for period between impact and wildfire (surviving whole time inhospitable climate conditions). There are two other possible explanations of charcoals. Either they were present at location as a result of past forest fire or they were produced during impact. However, similar small charcoal pieces were discovered around many craters (Kaali, Ilumetsa, Campo del Cielo, Whitecourt) and they were successfully used to estimate maximum age of those structures. During second stage of 14C dating the age obtained from three samples (taken few centimeters above the mineral bottom) was estimated ~5 ka BP. Looking for answer why these results are so different from previous once there may be mentioned at least two options. Lake sediments is difficult matter for radiocarbon dating and results may be hundreds or even thousands years older than real age. Second explanation may be that older matter (remnant of trees, paleosoil etc.), distributed around craters during impact, could be displaced by wind, rain, erosion and trapped in the bottom of cavities. The argument, which may be also against hypothesis of impact ~5 ka BP is meteorite shrapnel stuck in the roots of old tree. Result of expertise showed, that there exists mechanical damage in the wood and the only possible explanation is that meteorite has hit living tree. Maximum age, that this type of wood may preserve (inside building) is 1,8 ka while in natural environment not more than 500 years. Anyway some further examinations should be performed. The age obtained during AMS 14C dating of 2 samples from thin layer of paleosoil, discovered under overturned flap around largest Morasko crater, was ~5 ka BP. Observation that preserved layer of paleosoil is approximately 3 times thinner than thickness of modern soil may lead to conclusion that during impact top (younger) layer of organic sediments was removed and only older part “survived” in few locations close to the rim. The conclusion of the research was that dating provides maximum age of the impact (which does not exclude much younger impact <1 ka BP) so could be considered as right explanation of past discrepancies.

Discipline

Year

Volume

12

Pages

129-148

Physical description

Dates

published
2021

Contributors

References

  • Bland P.A., Artemieva N.A., 2006, The rate of small impacts on Earth, Meteoritics & Planetary Science, 41, s. 607–631.
  • Bluszcz A., Adamiec G., 1994, Termoluminescencyjne datowanie neolitycznej ceramiki z terenu Małopolski: okolice Kazimierzy Wielkiej, Światowit, 39, s. 157–181.
  • Bronikowska M., 2018, Jak powstały Kratery Morasko? Rewizja istniejących poglądów dotyczących genezy zagłębień w rezerwacie pod Poznaniem, Acta Soc. Metheor. Polon., 9, s. 30–41.
  • Cassidy W.A., Renard M.L., 1996, Discovering research value in the Campo del Cielo, Argentina, meteorite craters, Meteoritics & Planetary Science, 31, s. 433–448.
  • Ceplecha Z., Borovička J., Elford W.G., Revelle D.O., Hawkes R.L., Porubčan V., Šimek M., 1998, Meteor Phenomena and Bodies, Space Science Reviews, 84, s. 327–471.
  • Choiński A., Ptak M., 2017, Batymetria jezior meteorytowych w rezerwacie „Meteoryt Morasko” (Bathymetry of crater lakes in the “Meteoryt Morasko” reserve), Acta Soc. Metheor. Polon., 8, s. 23–29.
  • Czajka W., 2014, Rozważania nad bolidem wielkopolskim – model rdzewienia kuli żelaznej, Meteoryt, 4, s. 8–11.
  • Fedorowicz S., 2011, Metodyczne badania w luminescencyjnym datowaniu osadów czwartorzędowych, Annales UMCS, Geographia, Geologia, Mineralogia et Petrographia, 66, s. 35–52.
  • Herd C.D.K., Froese D.G., Walton E.L., Kofman R.S., Herd E.P.K., Duke M.J.M., 2008, Anatomy of a young impact event in central Alberta, Canada: Prospects for the missing Holocene impact record, Geology, 36, s. 955–958.
  • Karczewski A., 1976, Morphology and lithology of closed depression area located on the northern slope of Morasko Hill near Poznań, w: Hurnik, H., Meteorite Morasko and the region of its fall, Seria Astronomia, 2, UAM Poznań, s. 7–19.
  • Lovering J.F., Parry L.G., Jaeger J.C., 1960, Temperatures and mass losses in iron meteorites during ablation in the earth’s atmosphere, Geochimica et Cosmochimica Acta, 19(3), s. 156–167.
  • Łosiak A., Wild E.M., Geppert W.D., Huber M.S., Jeleht A., Kriiska A., Kulkov A., Paavel K., Pirkovic I., Plado J., Steier P., Välja R., Wilk J., Wisniowski T., Zanetti M., 2016, Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta, Meteoritics and Planetary Science, 51(4), s. 681–695.
  • Łosiak A., Jeleht A., Plado J., Szyszka M., Kirsimäe K., Wild E.M., Steier P., Belcher C., Jaźwa A.M., Helde R., 2020, Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia), Meteoritics and Planetary Science, 55(2), s. 274–293.
  • Moska P., Stankowski W., Poręba G., 2018, Optically stimulated luminescence techniques applied to the dating of the fall of meteorites in Morasko, Geochronometria, 45(1), s. 74–81.
  • Muszyński A., Kryza R., Karwowski Ł., Pilski A.S., Muszyńska J., 2012, Morasko. Największy deszcz meteorytów żelaznych w Europie środkowej (Morasko. The largest iron meteorite shower in Central Europe), seria: Studia i Prace z Geografii i Geologii nr 28, Bogucki Wydawnictwo Naukowe, Poznań, ss. 111.
  • Niklewski J., Kącki J., Stawin J., 1964, Analiza pyłkowa interglacjału z Główczyna, Acta Geologica Polonica, 14(3), s. 407–414.
  • Nowaczyk B., Pazdur M.F., 1982, Próba datowania metodą 14C gleb kopalnych z wydmy w Troszynie koło Wolina, Roczniki Gleboznawcze, 33(3–4), s. 145–158.
  • Pleskot K., Tjallingii R., Makohonienko M., Nowaczyk N., Szczucinski W., 2018, Holocene paleohydrological reconstruction of Lake Strzeszynskie (western Poland) and its implications for the central European climatic transition zone, Journal of Paleolimnology 59, s. 443–459.
  • Pokrzywnicki J., 1964, I. Meteoryty Polski. II. Katalog meteorytów w zbiorach polskich, Studia Geologica Polonica, vol. XV, Wydawnictwa Geologiczne, Warszawa, s. 49–70.
  • Ptak M., 2013, Zmiany powierzchni i batymetrii wybranych jezior Pojezierza Pomorskiego, Prace Geograficzne, 133, s. 61–76.
  • Sinha K., 2007, Effect of Reynolds Number on Detached Eddy Simulation of Hypersonic Base Flows, Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting, 24, ss. 11.
  • Socha K., 2011, Pożegnanie Kraterów Morasko, Acta Soc. Metheor. Polon., 2, s. 127–137.
  • Socha K., Bednarz B., Wąsik R., 2014, Przynależność gatunkowa drzewa z rezerwatu przyrody „Meteoryt Morasko”, w korzeniu którego utkwił fragment meteorytu (Species of tree from the „Morasko Meteorite” nature reserve, in which root stuck a fragment of meteorite), Acta Soc. Metheor. Polon., 5, s. 97–103.
  • Socha K., 2020, „Pożegnanie Kraterów Morasko” – Polemika!, Acta Soc. Metheor. Polon., 11, s. 159–166.
  • Stankowski W., 2001, The geology and morphology of the natural reserve “Meteoryt Morasko”, Planetary and Space Science, 49, s. 749–753.
  • Stankowski W., Raukas A., Bluszcz A., Fedorowicz S., 2007, Luminescence dating of the Morasko (Poland), Kaali, Ilumetsa and Tsoorikmäe (Estonia) meteorite craters, Geochronometria, 28, s. 25–29.
  • Stankowski W., 2009, Meteoryt Morasko Osobliwość obszaru Poznania, Wydawnictwa Naukowe UAM, Poznań, ss. 84.
  • Stankowski W., 2011, Luminescence and radiocarbon dating as tools for the recognition of extraterrestrial impacts, Geochronometria, 38(1), s. 50–54.
  • Stankowski W., Bluszcz A., 2012, Luminescence Dating as Comparative Data to Radiocarbon Age Estimation of Morasko Spherical Depressions, w: Michalska-Nawrocka D. (red.), Radiometric Dating, InTech open science, s. 115–125.
  • Szokaluk M., Jagodziński R., Muszyński A., Szczuciński W., 2015, Ejecta blanket from the Morasko meteorite impact – first results, Bridging the Gap III: Impact Cratering In Nature, Experiments and Modeling, University of Freiburg, Germany, LPI Contribution No. 1861#1100.
  • Szokaluk M., Jagodziński R., Muszyński A., Szczuciński W., 2019, Geology of the Morasko craters, Poznań, Poland – Small impact craters in unconsolidated sediments, Meteoritics & Planetary Science, 54(7), s. 1478–1494.
  • Tobolski K., 1976, Palynological investigations of bottom sediments in closed depressions, w: Hurnik, H., Meteorite Morasko and the region of its fall, Seria Astronomia, 2, UAM Poznań 1976, s. 21–26.
  • Walanus A., Goslar T., 2009, Datowanie radiowęglowe, Wydawnictwo AGH, Kraków, ss. 148.
  • Walesiak T., 2016, Analiza cech impaktu ukośnego na przykładzie struktur Porządzie, Jaszczułty i Ochudno, Acta Soc. Metheor. Polon., 7, s. 144–150.
  • Walesiak T., 2017, Jeszcze jedna dyskusja na temat daty spadku meteorytu Morasko, Acta Soc. Metheor. Polon., 8, s. 123–148.
  • Więckowski K., 2009, Zagadnienia genezy, wieku i ewolucji jezior poszczególnych regionów Polski w świetle badań ich osadów dennych, Studia Limnologica et Telmatologica, Suplement 1, s. 29–72.
  • Wyrwa A.M., 2008, Przyczynki do rekonstrukcji klimatu w prahistorii i czasach historycznych na Pałukach w świetle interdyscyplinarnych badań łekneńskiego kompleksu osadniczego, w: Chudziak W. (red), Człowiek i środowisko przyrodnicze we wczesnym średniowieczu w świetle badań interdyscyplinarnych, Toruń, s. 183–244.
  • Earth Impact Database, PASSC, Criteria for the identification of an impact structure: http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Criteria.html
  • Poznańskie Laboratorium Radiowęglowe, Datowanie 14C – różne problemy: https://radiocarbon.pl/datowanie-14c-rozne-problemy/

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2021-issue-12-article-7e7c58fa-497f-3100-9d8e-08d76c27fc8e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.