As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
We determined the in vitro corrosion resistance of the composite chitosan-silver(I) [Ag(I)] ion coating on the cobalt-chromium-molybdenum (CoCrMo) dental alloy in a 0.9% sodium chloride (NaCl) solution at 37°C. We obtained the novel composite chitosan–Ag(I) ion coating by electrophoretic deposition at 20 V for 30 s at room temperature in a 2% (v/v) aqueous solution of acetic acid with 1 g dm–3 chitosan and 10 g dm–3 silver nitrate. We evaluated the chemical composition with energy dispersive spectroscopy and Fouriert-ransform infrared spectroscopy. We investigated surface topography and electronic properties with a scanning Kelvin probe. We determined the mechanism and kinetics of the electrochemical corrosion of the obtained coatings by electrochemical impedance spectroscopy. The Ag content in the composite chitosan–Ag(I) ion coating was 1.9 ± 1 wt.%. The cataphoretic co-deposition of chitosan and Ag(I) ions in an aqueous solution can be used to modify the CoCrMo alloy surface to obtain new coatings with antibacterial properties.
Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
Najman S, Mitić V, Groth T, Barbeck M, Chen P-Y, Sun Z, Randjelović B; (2023) Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. 1st ed, Springer Nature Switzerland AG, Cham.
Motoyoshi M; (2022) Current Techniques and Materials in Dentistry. MDPI AG, Basel.
Givan DA; (2014) Precious metal alloys for dental applications. In: Baltzer N, Copponnex T (eds), Precious Metals for Biomedical Applications. Woodhead Publishing, Cambridge, 109–129. DOI:10.1533/9780857099051.2.109
Sinyakova EF, Vasilyeva IG, Oreshonkov AS, Goryainov SV, Karmanov NS; (2022) Formation of noble metal phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the process of fractional crystallization of the CuFeS2 melt. Minerals 12, 1136. DOI:10.3390/min12091136
Rudolf R, Lazic V, Majeric P, Ivanic A, Kravanja G, Raic K; (2022) Dental Gold Alloys and Gold Nanoparticles for Biomedical Applications. Springer Nature Switzerland AG, Cham.
Osak P, Maszybrocka J, Kubisztal J, Łosiewicz B; (2022) Effect of amorphous calcium phosphate coatings on tribological properties of titanium grade 4 in protein-free artificial saliva. Biotribology 32, 100219. DOI:10.1016/j.biotri.2022.100219
Osak P, Maszybrocka J, Zubko M, Rak J, Bogunia S, Łosiewicz B; (2021) Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications. Materials 14, 7536. DOI:10.3390/ma14247536
Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Bogunia S, Ratajczak P, Aniołek K; (2021) Effect of temperature on electrochemically assisted deposition and bioactivity of CaP coatings on CpTi grade 4. Materials 14, 5081. DOI:10.3390/ma14175081
Osak P, Maszybrocka J, Kubisztal J, Ratajczak P, Łosiewicz B; (2021) Longterm assessment of the in vitro corrosion resistance of biomimetic ACP coatings electrodeposited from an acetate bath. J Funct Biomater 12, 12. DOI:10.3390/jfb12010012
Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Stach S; (2020) Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 13, 4154. DOI:10.3390/ma13184154
Primozic J, Hren M, Mezeg U, Legat A; (2022) Tribocorrosion susceptibility and mechanical characteristics of as-received and long-term in-vivo aged nickel-titanium and stainless-steel archwires. Materials 15, 1427. DOI:10.3390/ma15041427
Dudek K, Dulski M, Łosiewicz B; (2020) Functionalization of the NiTi shape memory alloy surface by HAp/SiO2/Ag hybrid coatings formed on SiO2-TiO2 glass interlayer. Materials 13, 1648. DOI:10.3390/ma13071648
Osak P, Łosiewicz B; (2018) EIS study on interfacial properties of passivated Nitinol orthodontic wire in saliva modified with Eludril® mouthwash. Prot Met Phys Chem Surf 54(4), 680–688. DOI:10.1134/S2070205118040226
Freitag M, Łosiewicz B, Goryczka T, Lelątko J; (2012) Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid. Solid State Phenom 183, 57–64. DOI:10.4028/www.scientific.net/SSP.183.57
Lelątko J, Goryczka T, Wierzchoń T, Ossowski M, Łosiewicz B, Rówiński E, Morawiec H; (2010) Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Solid State Phenom 163, 127–130. DOI:10.4028/www.scientific.net/ssp.163.127
Łosiewicz B, Skwarek S, Stróż A, Osak P, Dudek K, Kubisztal J, Maszybrocka J; (2022) Production and characterization of the third-generation oxide nanotubes on Ti-13Zr-13Nb alloy. Materials 15, 2321. DOI:10.3390/ma15062321
Aniołek K, Łosiewicz B, Kubisztal J, Osak P, Stróż A, Barylski A, Kaptacz S; (2021) Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti-6Al-7Nb alloy. Coatings 11, 505. DOI:10.3390/coatings11050505
Łosiewicz B, Stróż A, Osak P, Maszybrocka J, Gerle A, Dudek K, Balin K, Łukowiec D, Gawlikowski M, Bogunia S; (2021) Production, characterization and application of oxide nanotubes on Ti–6Al–7Nb alloy as a potential drug carrier. Materials 14, 6142. DOI:10.3390/ ma14206142
Stróż A, Dercz G, Chmiela B, Łosiewicz B; (2019) Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant. AIP Conf Proc 2083, 030004. DOI:10.1063/1.5094314
Stróż A, Łosiewicz B, Zubko M, Chmiela B, Balin K, Dercz G, Gawlikowski M, Goryczka T; (2017) Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater Charact 132, 363–372. DOI:10.1016/j.matchar.2017.09.004
Stróż A, Dercz G, Chmiela B, Stróż D, Łosiewicz B; (2016) Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys Pol 130, 1079–1080. DOI:10.12693/APhysPolA.130.1079
Smołka A, Dercz G, Rodak K, Łosiewicz B; (2015) Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution. Arch Metall Mater 60(4), 2681–2686. DOI:10.1515/amm-2015–0432
Szklarska M, Dercz G, Simka W, Łosiewicz B; (2014) A.c. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf Interface Anal 46(10–11), 698–701. DOI:10.1002/sia.5383
Smołka A, Rodak K, Dercz G, Dudek K, Łosiewicz B; (2014) Electrochemical formation of self-organized nanotubular oxide layers on Ti13Zr13Nb alloy for biomedical applications. Acta Phys Pol 125(4), 932–935. DOI:10.12693/APhysPolA.125.932
Padrós R, Giner-Tarrida L, Herrero-Climent M, Punset M, Gil FJ; (2020) Corrosion resistance and ion release of dental prosthesis of CoCr obtained by CAD-CAM milling, casting and laser sintering. Metals 10, 827. DOI:10.3390/met10060827
Uriciuc WA, Boșca AB, Băbțan AM, Vermeșan H, Cristea C, Tertiș M, Pășcuță P, Borodi G, Suciu M, Barbu-Tudoran L, Popa CO, Ilea A; (2022) Study on the surface of cobalt-chromium dental alloys and their behavior in oral cavity as cast materials. Materials 15, 3052. DOI:10.3390/ma15093052
Kajzer W, Szewczenko J, Kajzer A, Basiaga M, Jaworska J, Jelonek K, Nowińska K, Kaczmarek M, Orłowska A; (2021) Physical properties of electropolished CoCrMo alloy coated with biodegradable polymeric coatings releasing heparin after prolonged exposure to artificial urine. Materials 14, 2551. DOI:10.3390/ma14102551
Mace A, Khullar P, Bouknight C, Gilbert JL; (2022) Corrosion properties of low carbon CoCrMo and additively manufactured CoCr alloys for dental applications. Dent Mater 38(7), 1184–1193. DOI:10.1016/j.dental.2022.06.021
Avcu E, Baştan FE, Abdullah HZ, Ur Rehman MA, Yıldıran Avcu Y, Boccaccini AR; (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103, 69–108. DOI:10.1016/j.pmatsci.2019.01.001
Szulc M, Lewandowska K; (2023) Biomaterials based on chitosan and its derivatives and their potential in tissue engineering and other biomedical applications-a review. Molecules 28, 247. DOI:10.3390/molecules28010247
Raafat D, Sahl HG; (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2(2), 186–201. DOI:10.1111/j.1751–7915.2008.00080.x
Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna-Bárcenas G; (2015) Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67, 242–251. DOI:10.1016/j.eurpolymj.2015.03.066
Jiang Wang-ZhanW.Z. WZ, Cai YangY. Y, Li Hao-YingH.Y. HY; (2017) Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol 312, 124–132. DOI:10.1016/j.powtec.2017.02.021
Simchi A, Pishbin F, Boccaccini AR; (2009) Electrophoretic deposition of chitosan. Mater Lett 63(26), 2253–2256. DOI:10.1016/j.matlet.2009.07.046
Szklarska M, Łosiewicz B, Dercz G, Maszybrocka J, Rams-Baron M, Stach S; (2020) Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution. RSC Adv 10(23), 13386–13393. DOI:10.1039/d0ra01481h
Kowalski P, Łosiewicz B, Goryczka T; (2015) Deposition of chitosan layers on NiTi shape memory alloy. Arch Metall Mater 60(1), 171–176. DOI:10.1515/amm-2015–0027
Łosiewicz B, Dercz G, Szklarska M, Simka W, Łężniak M, Krząkała A, Swinarew A; (2013) Characterization of electrophoretically deposited chitosan coatings on Ti13Zr13Nb alloy for biomedical applications. Solid State Phenom 203–204, 212–215. DOI:10.4028/www.scientific.net/ssp.203–204.212
Vokhidova NR, Ergashev KH, Rashidova SSh; (2022) Synthesis and application of chitosan hydroxyapatite: a review. Prog Chem Appl Chitin Deriv 27, 5–34. DOI:10.15259/PCACD.27.001
Hasnain MS, Beg S, Nayak AK; (2021) Chitosan in Drug Delivery. 1st ed, Elsevier Science, Berlin, Germany.
Nuc Z, Dobrzycka-Krahel A; (2021) From chitin to chitosan – a potential natural antimicrobial agent. Prog Chem Appl Chitin Deriv 26, 23–40. DOI:10.15259/PCACD.26.003
Łosiewicz B, Popczyk M, Szklarska M, Smołka A, Osak P, Budniok A; (2015) Application of the scanning Kelvin probe technique for characterization of corrosion interfaces. Solid State Phenom 228, 369–382. DOI:10.4028/www.scientific.net/ssp.228.369
ISO 10271:2021–02: Dentistry - Corrosion test methods for metallic materials.
Lasia A; (2014) Electrochemical Impedance Spectroscopy and Its Applications. Springer, New York. DOI:10.1007/978–1-4614–8933–7
Eco Chemie BV; (2001) User Manual for Frequency Response Analysis (FRA) for Windows Version 4.9. Eco Chemie BV, Utrecht.