Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 1 | 2-7

Article title

Antimicrobial coatings as a promising prevention strategy of implants infections triggered by Staphylococcus aureus

Content

Title variants

PL
Powłoki antybakteryjne jako obiecująca strategia profilaktyczna zakażeń implantów o etiologii Staphylococcus aureus

Languages of publication

Abstracts

PL
Postęp technologiczny w tworzeniu różnego typu implantów jest jednym z największych osiągnięć współczesnej chirurgii. Takie urządzenia mogą zastąpić lub przywrócić funkcję uszkodzonych tkanek, co znacząco poprawia jakość i długość życia pacjentów. Niestety infekcje są głównym powodem usuwania implantów. Pacjenci wymagają też zazwyczaj trudnego i kosztownego leczenia. Gronkowiec złocisty jest najczęściej wykrywanym patogenem w tego typu powikłaniach. Powoduje to, że metody profilaktyczne zyskują na atrakcyjności. Najważniejszymi technikami umożliwiającymi zapobieganie infekcjom implantów są pokrycia przeciwdrobnoustrojowe. Dzięki nim biomateriały, z których otrzymywane są urządzenia medyczne mogą uzyskać właściwości antyadhezyjne i bakteriobójcze. W niniejszej pracy dokonujemy przeglądu obiecujących metod tworzenia takich pokryć. Większość koncepcji dotyczy pokrywania implantów substancjami bakteriobójczymi, takimi jak antybiotyki czy nanocząsteczki srebra. Co ciekawe, nawet zmiany w topografii powierzchni mogą być konieczne, aby skutecznie zapobiec adhezji gronkowca złocistego.
EN
Technological progress in the development of various types of implants is one of the greatest achievements of contemporary surgery. Such devices can replace or restore the function of damaged tissues, significantly improving people’s quality of life and its longevity. Unfortunately, infections are the main reason for removing implants from patients who usually then need expensive and challenging treatment. Staphylococcus aureus is the most frequent pathogen detected in such complications. Therefore, prevention methods become more attractive. Antimicrobial coatings are the most important techniques to prevent implant infections. They give the biomaterials from which medical devices are obtained antiadhesive and antibacterial properties. In this paper, we review promising methods of creating such coatings. The majority of concepts are about covering implants with germicidal substances like antibiotics or silver nanoparticles. Interestingly, even changes in the surface topography may be necessary to prevent
Staphylococcus aureus adhesion effectively

Year

Volume

28

Issue

1

Pages

2-7

Physical description

Dates

published
2023

Contributors

  • Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Poland
author
  • Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Poland
  • Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Poland
  • Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Poland

References

  • Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014; 4:178.
  • Troeman DPR, Van Hout D, Kluytmans JAJW. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: a review. J Antimicrob Chemother. 2019; 74(2): 281-294.
  • Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines. 2016; 15(11): 1373-1392
  • Tenover FC, Pearson ML. Methicillin-resistant Staphylococcus aureus. Emerg Infect Dis. 2004; 10(11): 2052-3.
  • Spagnolo AM, Orlando P, Panatto D, Amicizia D, Perdelli F, Cristina ML. Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings. J Prev Med Hyg. 2014; 55(4): 137-44.
  • Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017; 41(3): 430- 449.
  • Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2018; 98(2): 111- 117
  • Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017; 104(3): 365- 376.
  • Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther. 2015; 13(12): 1499-516.
  • Sacar M, Sacar S, Kaleli I, Onem G, Turgut H, Goksin I, Ozcan V, Kaan Inan B, Duver H, Baltalarli A. Linezolid alone and in combination with rifampicin prevents experimental vascular graft infection due to methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. J Surg Res. 2007; 139(2): 170-5.
  • Sacar M, Goksin I, Baltalarli A, Turgut H, Sacar S, Onem G, Ozcan V, Adali F. The prophylactic efficacy of rifampicin-soaked graft in combination with systemic vancomycin in the prevention of prosthetic vascular graft infection: an experimental study. J Surg Res. 2005; 129(2): 329-34.
  • Hernandez MD, Mansouri MD, Aslam S, Zeluff B, Darouiche RO. Efficacy of combination of N-acetylcysteine, gentamicin, and amphotericin B for prevention of microbial colonization of ventricular assist devices. Infect Control Hosp Epidemiol. 2009; 30(2): 190-2.
  • Manner S, Goeres DM, Skogman M, Vuorela P, Fallarero A. Prevention of Staphylococcus aureus biofilm formation by antibiotics in 96-Microtiter Well Plates and Drip Flow Reactors: critical factors influencing outcomes. Sci Rep. 2017; 7: 43854.
  • Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother. 2003; 47(11): 3580-5
  • Hogan S, Kasotakis E, Maher S, Cavanagh B, O'Gara JP, Pandit A, Keyes TE, Devocelle M, O'Neill E. A novel medical device coating prevents Staphylococcus aureus biofilm formation on medical device surfaces. FEMS Microbiol Lett. 2019; 366(9): fnz107
  • Sacar M, Onem G, Baltalarli A, Sacar S, Turgut H, Goksin I, Ozcan V, Sakarya S. Neuraminidase produces a decrease of adherence of slime-forming Staphylococcus aureus to gelatin-impregnated polyester fiber graft fabric: an experimental study. J Artif Organs. 2007; 10(3): 177-80.
  • Mohyeldin SM, Mehanna MM, Elgindy NA. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int J Nanomedicine. 2016; 11: 2209-22.
  • Cirioni O, Mocchegiani F, Ghiselli R, Silvestri C, Gabrielli E, Marchionni E, Orlando F, Nicolini D, Risaliti A, Giacometti A. Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection. Eur J Vasc Endovasc Surg. 2010; 40(6): 817-22.
  • Yamada H, Takahashi N, Okuda S, Tsuchiya Y, Morisaki H. Direct observation and analysis of bacterial growth on an antimicrobial surface. Appl Environ Microbiol. 2010; 76(16): 5409-14.
  • Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006; 33: 17-34
  • Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. 2018; 46(sup1): 115-126.
  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine. 2020; 15: 2555-2562.
  • Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018; 7(13): e1701503.
  • Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013; 26(4): 609-21
  • De Simone S, Gallo AL, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med. 2014; 25(9): 2205-14.
  • Patenge N, Arndt K, Eggert T, Zietz C, Kreikemeyer B, Bader R, Nebe B, Stranak V, Hippler R, Podbielski A. Evaluation of antimicrobial effects of novel implant materials by testing the prevention of biofilm formation using a simple small scale medium-throughput growth inhibition assay. Biofouling. 2012; 28(3): 267-77.
  • Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MA, Tmejova K, Kopel P, Nejdl L, Kudr J, Gumulec J, Krizkova S, Kynicky J, Kizek R, Adam V. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014; 351(2): 195-201
  • Sonkusre P, Singh Cameotra S. Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces. Colloids Surf B Biointerfaces. 2015; 136: 1051-7.
  • Chimutengwende-Gordon M, Pendegrass C, Bayston R, Blunn G. Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro. Biointerphases. 2014; 9(3): 031010.
  • Yuan Y, Zhang Y. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays. Nanomedicine. 2017; 13(7): 2199-2207.
  • Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q. Nanostructured surface topographies have an effect on bactericidal activity. J Nanobiotechnology. 2018; 16(1): 20.
  • Scardino AJ, Hudleston D, Peng Z, Paul NA, de Nys R. Biomimetic characterisation of key surface parameters for the development of fouling resistant materials. Biofouling. 2009; 25(1): 83-93.
  • Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010; 6(10): 3824-46
  • Hasan J, Chatterjee K. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale. 2015; 7(38): 15568-75.
  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci. 2012; 179-182: 142-9
  • Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci. 2017; 508: 603-616.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2215756

YADDA identifier

bwmeta1.element.ojs-issn-1427-3101-year-2023-volume-28-issue-1-article-46ad6794-5227-37de-bfbc-5e96b7b87f9c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.