Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 1 | 12-22

Article title

Diagnostyka alergii na jad pszczoły miodnej

Content

Title variants

Languages of publication

Abstracts

PL
Pszczoły są powszechnie hodowane przez ludzi w celu pozyskiwania miodu, wosku oraz mleczka pszczelego. Owady te uczestniczą także w zapylaniu roślin dziko rosnących oraz uprawnych. Koegzystencja ludzi i pszczół, wiąże się z ryzykiem użądlenia, co u osób predysponowanych może prowadzić do anafilaksji. Zwykle w miejscu użądlenia pojawia się miejscowy rumień, któremu towarzyszy ból oraz obrzęk do 10 cm, utrzymujący się do 24 godzin. Stanowi to fizjologiczną odpowiedź organizmu na jad. Ciężkie reakcje ogólnoustrojowe dotyczą od 0,9% do 3,4% wszystkich przypadków użądleń przez owady błonkoskrzydłe u dorosłych. Są one przyczyną 48,2% wszystkich śmierci wywołanych anafilaksją w tej grupie wiekowej. U dzieci od 0,5% do 0,9% użądleń kończy się ciężkimi reakcjami ogólnoustrojowymi, które stanowią 20,2% wszystkich anafilaksji. W jadzie pszczół zidentyfikowano ponad 103 substancje czynne, z czego dwanaście zostało zaklasyfikowanych jako alergeny. Pięć spośród nich odpowiada za 95% wszystkich reakcji alergicznych. Do tej grupy należą: fosfolipaza A2 (Api m 1), hialuronidaza (Api m 2), kwaśna fosfataza (Api m 3), dipeptydylowa peptydaza IV (Api m 5) oraz ikarapina (Api m 10). Obecnie dostępny jest szeroki panel metod diagnostycznych, które umożliwiają diagnozowanie oraz leczenie pacjentów z alergią na jad pszczoły. Można również przypuszczać, iż ciągłe poszukiwanie coraz lepszych narzędzi diagnostycznych w przyszłości zaowocuje jeszcze lepszymi testami.

Year

Volume

27

Issue

1

Pages

12-22

Physical description

Dates

published
2022

Contributors

  • Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych SU nr 2 im. Dr Jana Biziela w Bydgoszczy
author
  • Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych SU nr 2 im. Dr Jana Biziela w Bydgoszczy
  • Katedra Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych CM w Bydgoszczy UMK w Toruniu
  • Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych SU nr 2 im. Dr Jana Biziela w Bydgoszczy
  • Katedra Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych CM w Bydgoszczy UMK w Toruniu

References

  • 1. Peters RS., Krogmann L., Mayer C i wsp.: Evolutionary History of the Hymenoptera. Current Biology, 2017; 27: 1013–1018
  • 2. Zoologia: Stawonogi. Szczękoczułkopodobne, skorupiaki. T. 2, cz. 1.. Red. nauk. Czesław Błaszak. Warszawa: Wydawnictwo Naukowe PWN, 2011
  • 3. Arif F., Williams M., Hymenoptera Stings. StatPearls, 2021
  • 4. Tomsitz D., Brockow K., Component Resolved Diagnosis in Hymenoptera Anaphylaxis. Curr Allergy Asthma Rep, 2017; 17: 38
  • 5. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=154396#null 17.01.2022
  • 6. Pucca MB., Cerni FA., Oliveira IS i wsp.: Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol. 2019; 10: 2090
  • 7. Whitfield CH., Behura SK., Berlocher SH i wsp.: Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera. SCIENCE, 2006; 314: 642-645
  • 8. Khalil A., Elesawy BH., Ali MT i wsp.: Bee Venom: From Venom to Drug, Molecules 2021; 26(16): 4941
  • 9. Ollert M., Blank S., Anaphylaxis to Insect Venom Allergens: Role of Molecular Diagnostics. Curr Allergy Asthma Rep. 2015; 15(5): 26
  • 10. Matysiak J., Matysiak J., Bręborowicz A., The correlation between anti phospholipase A2 specific IgE and clinical symptoms after a bee sting in beekeepers, Postepy Dermatol Alergol. 2016; 33(3): 206-10
  • 11. Bilo MB., Tontini C., Martini M i wsp.: Clinical aspects of hymenoptera venom allergy and venom immunotherapy. Eur Ann Allergy Clin Immunol, 2019; 51: 244-257
  • 12. Blank S., Grosch J., Ollert M i wsp.: Precision Medicine in Hymenoptera Venom Allergy: Diagnostics, Biomarkers, and Therapy of Different Endotypes and Phenotypes. Front Immunol. 2020; 11
  • 13. Fauna Polski – charakterystyka i wykaz gatunków. Bogdanowicz W., Chudzicka E., Pilipiuk I. i Skibińska E. (red.). T. I. Warszawa: Muzeum i Instytut Zoologii PAN, 2004
  • 14. Gorska L., Chelminska M., Kuziemski K., Analysis of Safety, Risk Factors and Pretreatment Methods during Rush Hymenoptera Venom Immunotherapy. Int Arch Allergy Immunol 2008; 147: 241–245
  • 15. Jakob T., Rafei-Shamsabadi D., Spillner E i wsp., Diagnostics in Hymenoptera venom allergy: current concepts and developments with special focus on molecular allergy diagnostics, Allergo J Int. 2017; 26(3): 93–105.
  • 16. Hirata H., Sato K., Ogasawara T., Sensitization to Api m 1, Api m 2, and Api m 4 in Japanese beekeepers who had experienced systemic reactions to honeybee stings. Allergology International, 2019; 68: 261-263
  • 17. Hirata, H., Sato, K., Ogasawara, T i wsp.: Sensitization to Api m 1, Api m 2, and Api m 4 in Japanese beekeepers who had experienced systemic reactions to honeybee stings, Allergology International 2019; 68: 261-263
  • 18. Yaacoub C., Rifl M., El-Obeid D., The Cytotoxic Effect of Apis mellifera Venom with a Synergistic Potential of Its Two Main Components-Melittin and PLA2-On Colon Cancer HCT116 Cell Lines, Molecules. 2021; 26(8): 2264
  • 19. Frangieh J., Salma Y., Haddad K i wsp.: First Characterization of The Venom from Apis mellifera syriaca, A Honeybee from The Middle East, Toxins (Basel). 2019; 11(4): 191
  • 20. Hossen SM., Shapla MU., Gan HS i wsp.: Impact of Bee Venom Enzymes on Diseases and Immune Responses, Molecules. 2017; 22(1):
  • 21. Shen L-R., Ding M-H., Zhang L-W i wsp.: Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell, J Zhejiang Univ Sci B. 2010; 11(5): 342–349
  • 22. Niensen VG., The anticoagulant efect of Apis mellifera phospholipase A2 is inhibited by CORM-2 via a carbon monoxide-independent mechanism. Journal of Thrombosis and Thrombolysis, 2020: 49:100–107
  • 23. Francese F., Lambardi D., Mastrobuoni G. i wsp.: Detection of Honeybee Venom in Envenomed Tissues by Direct MALDI MSI, J Am Soc Mass Spectrom, 2009; 20: 112–123
  • 24. Teixeira-Cruz MJ., Strauch MA., Monteiro-Machado M., A Novel Apilic Antivenom to Treat Massive, Africanized Honeybee Attacks: A Preclinical Study from the Lethality to Some Biochemical and Pharmacological Activities Neutralization, Toxins (Basel). 2021; 13(1): 30
  • 25. Padavattan S., Schirmer T., Schmidt M., Identification of a B-cell Epitope of Hyaluronidase, a Major Bee Venom Allergen, from its Crystal Structure in Complex with a Specific Fab, J. Mol. Biol. (2007); 368: 742–752
  • 26. Marković-Housley Z., Miglierini G., Soldatova L i wsp.: Crystal Structure of Hyaluronidase, a Major Allergen of Bee Venom, Structure, 2020; 8: 1025–1035
  • 27. https://enzyme.expasy.org/cgi-bin/enzyme/enzyme-search-de (22.01.2022)
  • 28. Georgieva D., Greunke K., Genov N i wsp.: 3-D Model of the bee venom acid phosphatase: Insights into allergenicity, Biochemical and Biophysical Research Communications, 2009; 378: 711–715
  • 29. Heavner M., Gueguen G., Rajwani R i wsp.: Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera, Gene., 2013; 526(2): 195–204. Kowalczyk W i wsp. Diagnostyka alergii na jad pszczoły miodnej 21
  • 30. Grunwald T., Bockisch B., Spillner E i wps.: Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3), J ALLERGY CLIN IMMUNOL, 2005; 117: 848-854
  • 31. Barboni E., Kemeny DM., Campos S i wsp.: The Purification of acid phosphatase from honet bee vebon (apis mellifica), Toxicon, 1997; 25: 1097-1103
  • 32. Seppälä U., Francese S., Turillazzi S i wsp.: In situ imaging of honeybee (Apis mellifera) venom components from aqueous and aluminum hydroxide–adsorbed venom immunotherapy preparations, FOOD, DRUG, INSECT STING ALLERGY, AND ANAPHYLAXIS, 2012; 129: 1314-1320
  • 33. Wessman P., Stromstedt AA., Malmsten M i wsp.: Melittin-Lipid Bilayer Interactions and the Role of Cholesterol, Biophys J., 2008; 95(9): 4324–4336.
  • 34. Klocek G., Seelig J.: Melittin Interaction with Sulfated Cell Surface Sugars, Biochemistry 2008; 47: 2841–2849
  • 35. Chen J., Guan S-M., Sun Wei i wsp.: Melittin, the Major Pain-Producing Substance of Bee Venom, Neurosci Bull., 2016; 32(3): 265–272
  • 36. Blank S., Seusnabb G., Bockiscg B i wsp.: Identification, Recombinant Expression, and Characterization of the 100 kDa High Molecular Weight Hymenoptera Venom Allergens Api m 5 and Ves v 3, J Immunol, 2010; 184: 5403-5413
  • 37. Blank S., Etzold S., Darsow U i wsp.: Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy, Hum Vaccin Immunother. 2017; 13(10): 2482–2489
  • 38. Hemmer W. Kreuzreaktionen zwischen den Giften von Hymenopteren unterschiedlicher Familien, Gattungen und Arten, Hautarzt, 2014; 65: 775–779
  • 39. Vega-Castro A., Rodriguez-Gil D., Martinez-Gomariz M i wsp.: Api m 6 and Api m 10 as Major Allergens in Patients with Honeybee Venom, J Investig Allergol Clin Immunol, 2022; 32(2): 1-23
  • 40. Yang J., Lee KS., Kim BY i wsp.: Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom, Comparative Biochemistry and Physiology, 2017; 201: 11–18
  • 41. Kettner A., Hughes GJ., Frutiger S.: Api m 6: A new bee venom allergen, Journal of Allergy and Clinical Immunology, 2001; 107(5), 914–920
  • 42. Michel Y., Mclntyre M., Ginglinger H.: The Putative Serine Protease Inhibitor Api m 6 From Apis mellifera Venom: Recombinant and Structural Evaluation, J Investig Allergol Clin Immunol ,2012; 22(7): 476-484
  • 43. Geirgueva D., Greunke K., Betzel C.: Three-dimensional model of the honeybee venom allergen Api m 7: structural and functional insights, Mol. BioSyst., 2010; 6: 1056–1060
  • 44. Winningham KM., Christian MS., Schmidt M.: Hymenoptera venom protease allergens, Journal of Allergy and Clinical Immunology, 2004; 114(4): 928–933
  • 45. Burzyńska M., Piasecka-Kwiatkowska D.; A Review of Honeybee Venom Allergens and Allergenicity, Int J Mol Sci., 2021; 22(16): 8371
  • 46. Rand EE., Smit S., Beukes M.: Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine, Scientific Reports 2015; 5: 11779
  • 47. Tusiimire J.: A Study of the Biological Activity of Bee Venom and its Fractions With Regard to Cosmetic Science and Immunology, Strathclyde Institute of Pharmacy and Biomedical Sciences at the University of Strathclyde, 2016: 30-45
  • 48. Rauber MM., Roßbach, A., Jung, A i wsp.: The honey bee venom allergen Api m 10 displays one major IgE epitope, Api m 10160-174, Allergy, 2020; 75(7): 1756-1759
  • 49. Jakob T., Rauber MM., Perez-Riverol A i wps.: The Honeybee Venom Major Allergen Api m 10 (Icarapin) and Its Role in Diagnostics and Treatment of Hymenoptera Venom, Curr Allergy Asthma Rep. 2020; 20(9): 48
  • 50. Pereira Santos MC., Lourenco T., Pedro E., Evolution of Api m10 specific IgE and IgG4 after one year of bee venom immunotherapy, Eur Ann Allergy Clin Immunol, 2020; 52: 175-181
  • 51. Feindor M., Heath M., Hewings SJ i wsp.: Venom Immunotherapy: From Proteins to Product to Patient Protection, Toxins (Basel). 2021; 13(9): 616
  • 52. Vaerenbergha M., Smet L., Rafei-Shamsabadi i wsp.: IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology, Molecular Immunology, 2015; 63: 449–455
  • 53. Mandacaru S., Vale LHG., Vahidi S i wsp.: Characterizing the Structure and Oligomerization of Major Royal Jelly Protein 1 (MRJP1) by Mass Spectrometry and Complementary Biophysical Tools, Biochemistry. 2017; 56(11): 1645–1655
  • 54. Rosmilah, M., Shahnaz, M., Patel G i wsp.: Characterization of major allergens of royal jelly Apis mellifera, Tropical Biomedicine, 2008; 25(3): 243–251
  • 55. Matsuoka T., Kawashima T., Nakamura T i wsp.: Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera, Apidologie, 2012; 43: 685–697
  • 56. Furusawa T., Rakwal R., Nam HW i wsp.: Comprehensive Royal Jelly (RJ) Proteomics Using One- and Two-Dimensional Proteomics Platforms Reveals Novel RJ Proteins and Potential Phospho/Glycoproteins, Journal of Proteome Research 2008; 7: 3194–3229
  • 57. Schönleben S., Sickmann A., Mueller MJ i wsp.: Proteome analysis of Apis mellifera royal jelly, Analytical and Bioanalytical Chemistry, 2007; 389: 1087
  • 58. Blank S., Seismann H., Mclntyre M., Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom, PLoS One. 2013; 8(4): e62009
  • 59. Zhang Y., Chen Y., Cai Y., Novel polyclonal antibody-based rapid gold sandwich immunochromatographic strip for detecting the major royal jelly protein 1 (MRJP1) in honey, PLoS One. 2019; 14(2): e0212335
  • 60. Blank S., Bantleon FI., Mclntyre M., The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate-based reactivity, Clinical & Experimental Allergy, 2012; 42: 976–985
  • 61. Salmela H., Stark T., Stucki D i wsp., Ancient Duplications Have Led to Functional Divergence of Vitellogenin-Like Genes Potentially Involved in Inflammation and Oxidative Stress in Honey Bees, Genome Biol Evol. 2016; 8(3): 495–506
  • 62. Leipart V., Montserrat-Canals M., Cunha ES i wsp., Structure prediction of honey bee vitellogenin: a multi-domain protein important for insect immunity, FEBS Open Bio 2021; 12: 51-70
  • 63. BenVan LR., Nieh JC., Larval honey bees infected with Nosema ceranae have increased vitellogenin titers as young adults, Sci Rep., 2017; 7: 14144
  • 64. Harwood G., Amdam G., Freitak D., The role of Vitellogenin in the transfer of immune elicitors from gut to hypopharyngeal glands in honey bees (Apis mellifera), Journal of Insect Physiology 2019; 112: 90-100
  • 65. Adib-Tezer H., Bayerl C., Honeybee and wasp venom allergy: Sensitization and immunotherapy, Journal der Deutschen Dermatologischen Gesellschaft, 2018; 16(10): 1228–1247
  • 66. Lis K, Bartuzi Z. Testy wieloparametrowe do diagnostyki molekularnej alergii – aktualne możliwości, Alergia Astma Immunologia 2020, 25 (3): 122-140
  • 67. https://www.thermofisher.com/phadia/wo/en/product-catalog.html?solution=ImmunoCAP&region=PL (20.01.2022)
  • 68. https://www.hycorbiomedical.com/products (20.01.2022)
  • 69. https://www.siemens-healthineers.com/laboratory-diagnostics/ assays-by-diseases-conditions/allergy/laboratorian-information (20.01.2022) 22 Alergia Astma Immunologia 2022, 27 (1): 12-22
  • 70. https://www.euroimmun.com/documents/Catalogue/EUROIMMUN-Product-Catalogue.pdf (20.01.2022)
  • 71. https://www.emma-mdt.pl/diagnostyka/polycheck/alergologia/panele-molekularne-specjalne (11.02.2022)
  • 72. Halteren H., Lindern P-W., Burgers S. i wsp., Hymenoptera sting challenge of 348 patients: Relation to subsequent field stings, J Allergy clin immunol, 1994; 97(5): 1058-1063
  • 73. Ott H., Tenbrock H., Baron J. i wsp., Basophil Activation Test for the Diagnosis of Hymenoptera Venom Allergy in Childhood: a Pilot Study, Klin Padiatr, 2011; 223: 27-32.
  • 74. Scherer K, Weber JM, Jermann TM i wsp. Cellular in vitro assays in the diagnosis of Hymenoptera venom allergy. Int Arch Allergy Immunol, 2008;146(2):122-32.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2153457

YADDA identifier

bwmeta1.element.ojs-issn-1427-3101-year-2022-volume-27-issue-1-article-530af8c8-1e5d-3a19-a35f-cb18fe72af7c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.