Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 58 | 4 | 217-233

Article title

Growth Rate Modulation Enables Coexistence in a Competitive Exclusion Scenario Between Microbial Eukaryotes

Content

Title variants

Languages of publication

Abstracts

EN
Coexistence usually are exceeding the explicable rate by competitive exclusion principle. Since the pioneer Gause, many studies have used protist microcosm systems to study competitive exclusion. We explored a two-species system with the testate-amoebae: (Arcella intermedia and Pyxidicula operculata), where competitive exclusion is expected to occur. We determined their growth curves individually and under competitive interaction. We used a state-space model to represent system dynamics and calculated posterior population sizes simulating competition dynamics. Contrarily to our expectation, Arcella and Pyxidicula showed similar growth rates (1.37 and 1.46 days–1 respectively) and only different carrying capacity (1,997 and 25,108 cells cm–2 respectively). The maximum number of cells of both species when growing in competition was much lower if compared to the monospecific cultures (in average, 73% and 80% less for Arcella and Pyxidicula respectively). However, our competition experiments always resulted in coexistence. According to the models, the drop in growth rates and stochasticity mainly explains our coexistence results. We propose that a context of ephemeral resources can explain these results. Additionally, we propose generating factors of stochasticity as intraspecific variation, small population effects, toxicity of waste products and influence of the bacterial community.

Year

Volume

58

Issue

4

Pages

217-233

Physical description

Dates

published
2019

Contributors

  • Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
  • LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
  • Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Santo André, Brazil
  • Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
  • Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
  • Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
  • Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil

References

  • Altermatt F., Bieger A., Carrara F., Rinaldo A., and Holyoak M. (2011) Effects of connectivity and recurrent local disturbances on community structure and population density in experimental metacommunities. PLoS One 6: e19525
  • Altermatt F., Fronhofer E. A., Garnier A., Giometto A., Hammes F., Klecka J., Legrand D., Maechler E., Massie T. M., Pennekamp F. et al. (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6: 218–231
  • Amarasekare P. (2000) The geometry of coexistence. Biol. J. Linn. Soc. 71: 1–31
  • Barraclough T. G. (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48
  • Bastolla U., Lassig M., Manrubia S. C., and Valleriani A. (2005). Biodiversity in model ecosystems, I: coexistence conditions for competing species. J. Theor. Biol. 235: 521–530
  • Beyers R. J. and Odum H. T. (2012) Ecological microcosms. SSBM
  • Cadotte M. W. (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88: 823–829
  • Cadotte M. W., Mai D. V., Jantz S., Collins M. D., Keele M., and Drake J. A. (2006) On testing the competition-colonization trade-off in a multispecies assemblage. Am. Nat. 168: 704–709
  • Carrara F., Altermatt F., Rodriguez-Iturbe I., and Rinaldo A. (2012) Dendritic connectivity controls biodiversity patterns in experimental metacommunities. PNAS 109: 5761–5766
  • Castilho L., Moraes A., Augusto E., and Butler M. (2008) Animal cell technology: from biopharmaceuticals to gene therapy. Garland Science
  • Chesson P. (2000) Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31: 343–366
  • Couradeau E., Benzerara K., Moreira D., Gerard E., Kázmierczak J., Tavera R., and Lóopés-García P. (2011) Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake Alchichica (Mexico). PLoS One 6: e28767
  • Craig MacLean R., Dickson A., and Bell G. (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol. Lett. 8: 38–46
  • DeLong J. P., Okie J. G., Moses M. E., Sibly R. M., and Brown J. H. (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107: 12941–12945
  • Duval D., Demangel C., Miossec S., and Geahel I. (1992) Role of metabolic waste products in the control of cell proliferation and antibody production by mouse hybridoma cells. Hybridoma 11: 311–322
  • Fenchel T. (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326
  • Fox J. W. and Smith D. C. (1997) Variable outcomes of protistrotifer competition in laboratory microcosms. Oikos, 489–495
  • Fronhofer E. A., Klecka J., Melián C. J., and Altermatt F. (2015) Condition-dependent movement and dispersal in experimental metacommunities. Ecol. Lett. 18: 954–963
  • Gause G. F. (1934) The struggle for existence. Soil Science 41: 159
  • Gerisch G., Fromm H., Huesgen A., and Wick U. (1975) Control of cell-contact sites by cyclic amp pulses in differentiating Dictyostelium cells. Nature 255: 547
  • Giometto A., Altermatt F., Carrara F., Maritan A., and Rinaldo A. (2013) Scaling body size fluctuations. PNAS 110: 4646–4650
  • Giometto A., Rinaldo A., Carrara F., and Altermatt F. (2014) Emerging predictable features of replicated biological invasion fronts. PNAS 111: 297–301
  • Griffiths J. I., Warren P. H., and Childs D. Z. (2015) Multiple environmental changes interact to modify species dynamics and invasion rates. Oikos 124: 458–468
  • Haddad N. M., Holyoak M., Mata T. M., Davies K. F., Melbourne B. A., and Preston K. (2008) Species traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11: 348–356
  • Hart S. P., Schreiber S. J., and Levine J. M. (2016) How variation between individuals affects species coexistence. Ecol. Lett. 19: 825–838
  • Hornik K., Leisch F., and Zeileis A. (2003) Jags: A program for analysis of Bayesian graphical models using Gibbs sampling. DSC, 2, 1–1
  • Hostetler J. A. and Chandler R. B. (2015) Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology 96: 1713–1723
  • Huang W., de Araujo Campos P. R., de Oliveira V. M., and Ferreira F. F. (2016) A resource-based game theoretical approach for the paradox of the plankton. PeerJ 4: e2329
  • Huete-Ortega M., Cermeño P., Calvo-Díaz A., and Marañón E. (2012) Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. R. Soc. B 279: 1815–1823
  • Huston M. (1979) A general hypothesis of species diversity. Am. Nat. 113: 81–101
  • Jeremy W., Peter J., et al. (2001) Effects of intra- and interspecific interactions on species responses to environmental change. J. Anim. Ecol. 70: 80–90
  • Jiang L. and Morin P. J. (2007) Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76: 660–668
  • Kanarek A. R. and Webb C. T. (2010) Allee effects, adaptive evolution, and invasion success. Evol. Appl. 3: 122–135
  • Kayser H. (1979) Growth interactions between marine dinoflagellates in multi-species culture experiments. Mar. Biol. 52: 357–369
  • Kempes C. P., Dutkiewicz S., and Follows M. J. (2012) Growth, metabolic partitioning, and the size of microorganisms. PNAS 109: 495–500
  • Kokkoris G. D., Jansen V. A., Loreau M., and Troumbis A. Y. (2002) Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71: 362–371
  • Konijn T. M., Van De Meene J., Bonner J. T., and Barkley D. S. (1967) The acrasin activity of adenosine-3’, 5’-cyclic phosphate. PNAS 58: 1152–1154
  • Kosakyan A., Gomaa F., Lara E., and Lahr D. J. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. Eur. J. Protistol. 55: 105–117
  • Loomis W. F. (2014) Cell signaling during development of dictyostelium. Dev. Biol. 391: 1–16
  • López-García P. and Moreira D. (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159: 67–73
  • Lotka A. J. (1920) Analytical note on certain rhythmic relations in organic systems. PNAS 6: 410–415
  • Lymperopoulou D. S., Kormas K. A., and Karagouni A. D. (2012) Variability of prokaryotic community structure in a drinking water reservoir (Marathonas, Greece). Microb. Environ. 27: 1–8
  • Mechler E. and Altermatt F. (2012) Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms. PLoS One 7: e45400
  • Meisterfeld R. (2000a) Order Arcellinida Kent, 1880. In: An Illustrated Guide to the Protozoa (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). 2nd edition. Society of Protozoologists, Allen Press, Lawrence, Kansas, 827–860
  • Menden-Deuer S. and Rowlett J. (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J. R. Soc. Interface 11: 20140031
  • Michod R. E. (2007) Evolution of individuality during the transition from unicellular to multicellular life. PNAS 104 (suppl 1): 8613–8618
  • Muller J. P., Hauzy C., and Hulot F. D. (2012) Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. J. Anim. Ecol. 81: 222–232
  • Nakagawa S., Johnson P. C., and Schielzeth H. (2017) The coefficient of determination r2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14: 20170213
  • Nealson K. and Hastings J. W. (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43: 496
  • Passarge J., Hol S., Escher M., and Huisman J. (2006) Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol. Monogr. 76: 57–72
  • Petchey O. L., McPhearson P. T., Casey T. M., and Morin P. J. (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402: 69
  • Pianka E. R. (2011) Evolutionary ecology. Eric R. Pianka Rosindell J., Hubbell S. P., and Etienne R. S. (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26: 340–348.
  • Saleem M., Fetzer I., Harms H., and Chatzinotas A. (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J. 7: 1912
  • Schoener T. W. (1976) Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10: 309–333
  • Stoffel M. A., Nakagawa S., and Schielzeth H. (2017) rptr: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8: 1639–1644
  • Su Y.-S. and Yajima M. (2015) R2jags: Using R to Run ’JAGS’. R package version 0.5-7
  • Svanback R. and Bolnick D. I. (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274: 839–844
  • Verhulst P. (1845) Recherches mathmatiques sur la loi d’accroissement de la population. Nouv. Mem. Acad. R. Sci. Bruxelles 18: 14–54
  • Violle C., Pu Z., and Jiang L. (2010) Experimental demonstration of the importance of competition under disturbance. PNAS 107: 12925–12929
  • Violle C., Nemergut D. R., Pu Z., and Jiang L. (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett 14: 782–787
  • Volterra V. (1926) Fluctuations in the abundance of a species considered mathematically. Nature 119: 12
  • Waters C. M. and Bassler B. L. (2005) Quorum sensing: cell-tocell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346
  • Weisse T. and Stadler P. (2006) Effect of ph on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708–171

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
52229629

YADDA identifier

bwmeta1.element.ojs-doi-10_4467_16890027AP_19_019_12021
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.