Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 57 | 1 | 1-28

Article title

A Half-century of Research on Free-living Amoebae (1965-2017): Review of Biogeographic, Ecological and Physiological Studies

Content

Title variants

Languages of publication

Abstracts

EN
This is a review of over 400 published research papers on free-living, non-testate amoebae during the approximate last half century (1965-2017) particularly focusing on three topics: Biogeography, Ecology, and Physiology. These topics were identified because of the substantial attention given to them during the course of the last half century, and due to their potential importance in issues of local and global expanse, such as: aquatic and terrestrial stability of habitats, ecosystem processes, biogeochemistry and climate change, and the role of eukaryotic microbes generally in ecosystem services. Moreover, there are close epistemological and thematic ties among the three topics, making a synthesis of the published research more systematic and productive. The number of reviewed publications for each of the three individual topics is presented to illustrate the trends in publication frequencies during the historical period of analysis. Overall, the number of total publications reviewed varied somewhat between 1965 and early 2000 (generally less than 10 per year), but increased to well over 10 per year after 2000. The number of Biogeography and Ecology studies identified in the online citations increased substantially after the mid 1990s, while studies focusing on Physiology were relatively more abundant in the first decade (1965-1974) and less were identified in the 1985 to 2004 period. Citations to the literature are listed in tables for each of the three topics for convenience in retrieving references to specific aspects, and representative examples of the cited research in the tables are reviewed in the text under subheads dedicated to each of the three topics. Biogeographic studies largely focused on the geographic distribution and localized patterns of occurrence of amoebae, with more recent studies incorporating more attention to likely correlates with environmental and biotic factors in the distribution and community composition of amoebae. Ecological studies reviewed in the later decades tended to focus more on community dynamics, the effects of environmental variables on communities (including climate-related topics), a trend toward more physiological ecology studies, combined field-based and experimental studies, and incorporation of newer methodologies such as molecular genetics. In general, physiology studies in the first decades of the review tended to focus on topics of cell physiology such as basic biochemistry, enzyme assays, mechanisms of cell division and development, encystment, and motility. Later studies examined broader topics such as osmoregulation, nutrition, fine structure evidence of cellular changes during the life cycle (including encystment and excystment), and issues related to asexual and sexual reproduction, with increasing substantial evidence of evolutionary patterns and phylogenetics based on molecular evidence. A final section on Conclusions and Recommendations summarizes the findings and presents some potentially productive approaches to future research studies on Amoebozoa within the three designated topics of analysis.

Year

Volume

57

Issue

1

Pages

1-28

Physical description

Dates

published
2018

Contributors

  • Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.

References

  • Anderson O. R. (2017) Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and others). In: Handbook of the Protists, (Eds. J. M. Archibald, A. G. B. Simpson, C. Slamovits) Springer-Verlag, International, pp. 1–35, DOI 10.1007/978-3-319-32669-6_2-1
  • Beare M. H., Coleman D. C., Crossley D. A. Jr., Hendrix P. F., Odum E. P. (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In: The significance and regulation of soil biodiversity. (Eds. H. P. Collins, G. P. Robertson, M. J. Klug) Kluwer, Netherlands, pp. 5–22
  • Behets J., Declerck P., Delaedt Y., Verelst L., Ollevier F. (2006) Quantitatve detection and differentiation of free-living amoeba species using SYBR Green-based real-time PCR melting curve analysis. Curr. Microbiol. 53: 506–509
  • Bradley S. G., Marciano-Cabral F. (1996) Diversity of free-living ‘naked” amoeboid organisms. J. Ind. Microbiol. 17: 314–321
  • Cavalier-Smith T., Fiore-Donno A. M., Chao E., Kudryavtsev A., Berney C., Snell E. A., Lewis R. (2015) Multigene phylogeny resolves deep branching Amoebozoa. Mol. Phylogenet. Evol. 83: 293–304
  • Dellinger O. P. (1906) Locomotion of Amoebae and allied forms. J. Exp. Zool. 3: 337–358
  • Douglas-Helders G. M. (2002) Epidemiology of amoebic gill disease. Ph. D. Thesis, University of Tasmania, 165 pp.
  • Fiore-Donno A. M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep. 6: 19068 DOI: 10.1038/srep19068
  • Geisen S., Bonkowski M. (2017) Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil. Ecol., doi.org/10.1016/j.apsoil.2017.05.021
  • Geisen S., Tveit A. T., Clark I. M., Richter A., Svenning M. M., Bonkowski M., Urich T. (2015) Metatranscriptomic census of active protists in soils. Int. Soc. Microb. Ecol. J. 9: 2178–2190
  • Hauer G., Rogerson A. (2005) Heterotrophic protozoa from hypersaline environments. In: Adaptations to life at high salt concentrations in Archaea, Bacteria, and Eukarya. (Ed. N. Gunde-Cimerman et al.) Springer, Netherlands, pp. 519–539
  • Król-Turminska K., Olender A. (2017) Human infections caused by free-living amoebae. Ann. Agric. Environ. Med. 24: 254–260
  • Kuiper M. W., Valster R. M., Wullings B. A., Boonstra H., Smidt H., van der Kooij D. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Env. Microbiol. 72: 5750–5756
  • Lahr D. J. G., Grant J., Nguyen T., Lin J. H., Katz L. A. (2011) Comprehensive phylogenetic reconstruction of Amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PLoS One: e22780, Doi.org/10.1371/journal.pone.0022780
  • Lei Y.-L., Stumm K., Wickham S. A., Berninger U.-G. (2014) Distributions and biomass of benthic ciliates foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61: 493–508
  • Leidy J. (1875) On the mode in which Amoeba swallows its food. Proc. Acad. Natl. Sci. Philadelphia, p. 143
  • Leidy J. (1878) Amoeba proteus. Am. Naturalist 12: 235–238
  • Mast S. O. (1910) Reactions in Amoeba to light. J. Exp. Zool. 9: 265–277
  • Mast S. O. (1926) Structure, movement, locomotiom, and stimulation in Amoeba. J. Morph. Physiol. 41: 347–425
  • Metcalf M. M. (1910) Studies upon Amoeba. J. Exp. Zool. A Ecol. Integr. Physiol. 9: 301–331
  • Pawlowski J., Burki F. (2009) Untangling the phylogeny of amoeboid protists. J. Eukaryot. Microbiol. 56: 16–25
  • Pritchard A. (1834) The Natural History of Animalcules. Whittaker and Co., London, pp. 22–24
  • Riviére D., Szczebara F. M., Berjeaud J.-M., Frère J., Héchard Y. (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J. Microb. Meth. 64: 78–83
  • Rodriguez-Zaragoza S. (1994) Ecology of free-living amoebae. Crit. Rev. Microbiol. 20: 225–241
  • Schuster F. L., Visvesvara G. S. (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34: 1001–1027
  • Smirnov A.V., Chao E. E., Nassonova E. S., Cavalier-Smith T. (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162: 545–570
  • Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘‘Amoebozoa’’ upon removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol. 47: 339–352
  • Visvesvara G. S. (2010). Free-living amoebae as opportunistic agents of human disease. Int. J. Neuroparasitol. 1: doi:10.4303/jnp/N100802
  • Amaral-Zettler L. A., Cole J., Laatsch A. D., Nerad T. A., Anderson O. R., Reysenbach A.-L. (2006) Vannella epipetala n. sp. isolated from the leaf surface of Spondias nombin (Anacardiaceae) growing in the dry forest of Costa Rica. J. Eukaryot. Microbiol. 53: 522–530
  • Amin N. M., Keong P. C., Shing C. K. (2008) The identification and distribution of naked amoebae in the water and sediments of the Setiu wetlands, Terengganu. J. Sustain. Sci. Manage. 3: 23–29
  • Anderson O. R. (2000) Abundance of terrestrial gymnamoebae at a Noreastern U. S. site: A four-year study, including the El Niño winter of 1997–1998. J. Eukaryot. Microbiol. 4: 148–155
  • Armstrong E., Rogerson A., Leftley J. W. (2000) The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coastal Shelf Sci. 50: 415–424
  • Bagatini I. L., Spínola A. L. G., Peres B. de M., Mansano A. da S., Rodrigues M. A. A., Batalha M. A. P. L., de Lucca J. V., Godinho M. J. L., Tundisi T. M., Seleghim M. H. R. (2013) Protozooplankton and its relationship with environmental conditions in 13 bodies of the Mogi-Guacu basin – SP, Brazil. Biota Neotrop. 13: 152–160.
  • Bamforth S. S. (1976) Rhizosphere-soil microbial comparisons in sub-tropical forests of southeastern Louisiana. Trans. Am. Microsc. Soc. 95: 613–621
  • Bamforth S. S. (1984) Microbial distributions in Arizona deserts and woodlands. Soil Biol. Biochem. 16: 133–137
  • Bamforth S. S. (2004) Water film fauna of microbiotic crusts of a warm desert. J. Arid Environ. 56: 413–423
  • Bamforth S. S. (2007) Protozoa from aboveground and ground soils of a tropical rain forest in Puerto Rico. Pedobiologia 50: 515–525
  • Bass P., Bischoff P. J. (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J. Eukaryot. Microbiol. 48: 475–479
  • Baumgartner M., Yapi A., Gröbner-Ferreira R., Stetter K. O. (2003) Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7: 267–274
  • Bell E. M., Weithoff G. (2008) Recruitment of Heliozoa, rhizopods and rotifers from the sediments of an extremely acidic lake during spring and early summer. Lake Reserv. Manage. 13: 105–115
  • Bhattacharya A., Ghosh M., Choudhury A. (1987) Seasonal abundance of Acanthamoeba rhysodes (Singh, 1952) (Protozoa: Gymnamoebia) in a mangrove litter-soil ecosystem of Gangetic-Estuary, India. J. Protozool. 34: 403–405
  • Bischoff P. J., Anderson O. R. (1998) Abundance and diversity of gymnamoebae at varying soil sites in northeastern U.S.A. Acta Protozool. 37: 17–21
  • Bovee E. C. (1965) An ecological study of amebas from a small stream in Northern Florida. Hydrobiologia 25: 69–87
  • Brown S., Smirnov A. V. (2004) Diversity of gymnamoebae in grassland soil in southern Scotland. Protistology 3: 191–195
  • Brown T. J., Cursons R. T. M., Keys E. A. (1982) Amoebae from Antarctic soil and water. Appl. Environ. Microbiol. 44: 491–493
  • Burnett B. R. (1977) Quantitative sampling of microbiota of the deep-sea benthos – I. Sampling techniques and some data from the abyssal central North Pacific. Deep-Sea Res. 24: 781–789
  • Butler H. G., Rogerson A. (2000) Naked amoebae from the benthic sediments in the Clyde Sea area, Scotland. Ophelia 53: 37–54
  • Caron D. A., Gast R. J., Garneau M. E. (2017) Sea ice as a habitat for micrograzers. In: Sea Ice (3rd Ed.), (Ed. D. N. Thomas). Wiley, Chichester, pp. 370–393
  • Davis P. G., Caron D. A., Sieburth J. McN. (1978) Oceanic amoebae from the North Atlantic: Culture, distribution, and taxonomy. Trans. Am. Microsc. Soc. 97: 73–88
  • Decamp O., Tsujino M., Kamiyama T. (1999) Abundance of naked amoebae in sediments of Hiroshima Bay, Seto Inland Sea of Japan. J. Eukaryot. Microbiol. 46: 160–164
  • de Jonckheere J. F., Murase J., Opperdoes F. R. (2011) A new thermophilic heterolobosean amoeba, Fumarolamoeba ceborucoi gen. nov., sp. nov., isolated near a fumarole at a volcano in Mexico. Acta Protozool. 50: 43–50
  • Dillon R. D., Walsh G. L., Bierle D. A. (1968) A preliminary survey of Antarctic meltwater and soil amoeba. Trans. Am. Microsc. Soc. 87: 486–492
  • Douglas-Helders G. M., O’Brien, D. P., McCorkell B. E., Zilberg D., Gross A., Carson J., Nowak B. F. (2003) Temporal and spatial distribution of paramoebae in the water column – a pilot study. J. Fish Dis. 26: 231–240
  • Dumack K., Koller R., Weber B., Bonkowski M. (2016) Estimated abundance and diversity of heterotrophic protists in South African biocrusts. S. Afr. J. Sci. 112: Art. #2015-0302, 5 pages. http://dx.doi.org/10.17159/ sajs.2016/20150302
  • Ettinger M. R., Webb S. R., Harris S. A., McIninch S. P., Garman G. C., Brown B. L. (2003) Distribution of free-living amoebae in James River, Virginia, USA. Parasitol. Res. 89: 6–15
  • Feest A., Madelin M. F. (1988) Seasonal population changes of myxomycetes and associated organisms in four woodland soils. FEMS Microbiol. Ecol. 53: 133–140
  • Fernandez-Leborans G., Valgañon B., de Zaldumbide M. C. (1999) Characterization of a marine sublittoral area facing the open sea, using epibenthic protists. Bull. Mar. Sci. 65: 725–743
  • Fernandez-Leborans G., Valgañon B., Perez E. (2001) Characterization of the protistan communities inhabiting the benthic area of an inner estuary. B. Mar. Sci. 68: 451–467
  • Finlay B. J., Curds C. R., Bamforth S. S., Bafort J. M. (1987) Ciliated protozoa and other microorganisms from two African soda Lakes (Lake Nakuru and Lake Simbi, Kenya). Archiv f. Protistenk. 133: 81–91
  • Garstecki T., Arndt H. (2000) Seasonal abundances and community structure of benthic rhizopods in shallow lagoons of the southern Baltic Sea. Europ. J. Protistol. 36: 103–115
  • Garcia-Sanchez A. M., Ariza C., Ubeda J. M., Martin-Sanchez P. M., Jurado V., Bastian F., Alabouvette C., Saiz-Jimenez C. (2013) Free-living amoebae in sediments from the Lascaux Cave in France. Int. J. Speleo. 42: 9–13
  • Geisen S., Fiore-Donno A. M., Walochnik J., Bonkowski M. (2014) Acanthamoeba everywhere: high diversity of Acnthamoeba in soils. Parasitol. Res. 113: 3151–3158
  • Gittelson S. M., Ferguson T. (1971) Temperature-related occurrence of protozoa. Hydrobiologia 37: 49–54
  • Griffths B. S. (2002) Spatial distribution of soil protozoa in an upland grassland. Europ. J. Protistol. 37: 371–373
  • Hada Y. (1967) The fresh-water fauna of the protozoa in Antarctica. Japanese Antarctic Research Expedition scientific reports. Special Issue 1: 209–215
  • Hauer G., Rogerson A., Anderson O. R. (2001) Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California. J. Eukaryot. Microbiol. 48: 663–669
  • Juhl A. R., Anderson O. R. (2014) Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuar. Coast. Mar. Sci. 151: 45–53
  • Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121–138
  • Kudryavtsev A., Pawlowski J. (2013) Squamamoeba japonica n. g. n. sp. (Amoebozoa): A deep-sea amoeba from the Sea of Japan with a novel cell coat structure. Protist 164: 13–23
  • Lara E., Mitchell E. A. D., Moreira D., Garcia, P. L. (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162: 14–32
  • Li J., Li M. G., Yang J., Wang C. F., Ai Y., Xu R. L. (2010) The community structure of soil Sarcodina in Baiyun Mountain, Guangzhou, China. Eur. J. Soil Biol. 46: 1–5
  • Lighthart B. (1969) Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J. Fish Res. Bd. Canada 26: 299–304
  • Lugo A., Alcocer J., Sanchez Ma. del R., Escobar E. (1998) Littoral protozoan assemblages from two Mexican hyposaline lakes. Hydrobiologia 381: 9–13
  • Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coastal Shelf Sci. 46: 565–572
  • Mayzlish-Gati E., Steinberger Y. (2007) Ameba community dynamics and diversity in a desert ecosystem. Biol. Fertil. Soils 43: 357–366
  • Moran D. M., Anderson O. R., Dennett M. R., Caron D. A., Gast R. J. (2007) A description of seven Antarctic marine gymnamoebae including a new subspecies, two new species and a new genus: Neoparamoeba aestuarina antarctica n. subsp., Platyamoeba oblongata n. sp., Platyamoeba contorta n. sp. and Vermistella Antarctica n. gen. n. sp. J. Eukaryot. Microb
  • Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebae) in mosses of the Malé Karpaty Mts (Slovakia). Ekol. Bratislava 24: 51–58
  • Munson D. A. (1992) Marine Amoebae from Georgia coastal surface waters. Trans. Am. Microsc. Soc. 111: 360–364
  • Murzov S. A., Caron D. A. (1996) Sporadic high abundances of naked amoebae in Black Sea plankton. Aquat. Microb. Ecol. 11: 161–169
  • Muylaert K., Van Mieghem R., Sabbe K., Tackx M., Vyverman W. (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiol. 432: 25–36
  • Ning Y.-Z., Shen Y.-F. (1998) Soil protozoa in typical zones of China: I. Faunal characteristics and distribution of species. Chinese J. Zool. 44: 5–10 (in Chinese)
  • Niyyati M., Latifi A. (2017) Free living amoeba belonging to Vannella spp. isolated from a hotspring in Amol City, Northern Iran. Novel. Biomed. 5: 85–88
  • Old K. M., Oros J. M. (1980) Mycophagous amoebae in Australian forest soils. Soil Biol. Biochem. 12: 169–175
  • Page F. C. (1971) A Comparative study of five fresh-water and marine species of Thecamoebidae. Trans. Am. Microsc. Soc. 90: 157–173
  • Page F. C. (1976) Some comparative notes on the occurrence of Gymnamoebia (Protozoa: Sarcodina) in British and American habitats. Trans. Am. Microsc. Soc. 95: 385–394
  • Patcyuk M. K., Dovgal I. V. (2012) Biotopic distribution of naked amoebas (Protista) in Ukrainian Polissya area. Vstn. Zool. 46: 36–41
  • Patsyuk M. K. (2014) Morphotypes in naked amoebas (Protista): Distribution in water bodies of Zhytomyr and Volyn Polissia (Ukraine) and possible ecological signifcance. Vstn. Zool. 48: 547–552
  • Revill D. L., Stewart K. W., Schlichting H. E., Jr. (1967) Passive dispersal of viable algae and protozoa by certain cranefiles and midges. Ecology 48: 1023–1027
  • Rivera F., Lugo A., Ramirez E., Bonilla P., Calderon A., Rodriguez S., Ortiz R., Gallegos E., Labastida A., Chavez M. P. (1992) Seasonal distribution of air-borne protozoa in Mexico City and its suburbs. Water Air Soil Poll. 61: 17–36
  • Rodríguez-Zaragoza S., García S. (1997) Species richness and abundance of naked amebae in the rhizoplane of the desert plant Escontria chiotilla (Cactaceae). J. Eukaryot. Microbiol. 44: 122–126
  • Rodríguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev desert, Israel. Microbial Ecol. 49: 134–141
  • Rogerson A. (1991) On the abundance of marine naked amoebae on the surfaces of five species of macroalgae. FEMS Microbiol. Ecol. 85: 301–312
  • Rogerson A., Detwiler A. (1999) Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmos. Res. 51: 35–44
  • Rogerson A., Gwaltney C. (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in southern Florida, USA. J. Eukaryot. Microbiol. 47: 235–241
  • Rogerson A., Hauer G. (2002) Naked amoebae (Protozoa) of the Salton Sea, California. Hydrobiologia 473: 161–177
  • Rogerson A., Laybourn-Parry J. (1992) The abundance of marine naked amoebae in the water column of the Clyde Estuary. Estuar. Coastal Shelf Sci. 34: 187–196
  • Sawyer T. K. (1971) Isolation and identification of free-living marine amoebae from Upper Chesapeake Bay, Maryland. Trans. Am. Microsc. Soc. 90: 43–51
  • Sawyer T. K. (1990) Marine amoebae in waters of Chincoteague Bay, Virginia: Ecological significance of “old” and “new” species. Va. J. Sci. 41: 433–440
  • Sawyer T. K., Nerad T. A., Visvesvara G. S. (1992) Acanthamoeba jacobsi sp. n. (Protozoa: Acanthamoebidae) from sewage contaminated ocean sediments. J. Helminthol. Soc. Wash. 59: 223–226
  • Seneviratna A. G. D. H., Waidyasekera P. L. D. (1995) Ecology and distribution of soil protozoa in the Bellanwila wetland. Vidyodaya J. Sci. 5: 79–87
  • Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Cilichinsky D. A. (2009) Chapter 8 Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin) Berlin, Springer-Verlag, pp. 97–115
  • Shmakova L. A., Rivkina E. M. (2015) Viable eukaryotes of the phylum Amoebozoa from the Arctic permafrost. Paleontol. J. 49: 572–577
  • Sleigh M. A., Baldock B. M., Baker J. H. (1992) Protozoan communities in chalk streams. Hydrobiologia 248: 53–64
  • Smirnov A. V. (2007) Cryptic freshwater amoeba species in the bottom sediments of Nivå Bay (Øresund, Baltic Sea). Europ. J. Protistol. 43: 87–94
  • Smirnov A. V., Goodkov A. V. (1996) Systematic diversity of gymnamoebae in the bottom sediments of a freshwater lake in Karelia (Lobosea, Gymnamoebia). Zoosyst. Rossica 4: 201–203
  • Smirnov A. V., Goodkov A. V. (2004) Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae) Eur. J. Protistol. 40: 113–118
  • Smirnov A. V., Thar R. (2003) Spatial distribution of Gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154: 359–369
  • Smirnov A. V., Thar R. (2004) Vertical distribution of Gymnamoebae (Rhizopoda, Lobosea) in the top layer of brackish-water sediments. Protist 155: 437–436
  • Smith H. G. (1982) The terrestrial protozoan fauna of South Georgia. Polar Biol. 1: 173–179
  • Smith H. G. (1996) Diversity of Antarctic terrestrial protozoa. Biodivers. Conserv. 5: 1379–1394
  • Solgi R., Niyyati M., Haghighi A., Nazemalhosseini Mojarad E. (2012) Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp. in hot spring of Ardebil Province, Northwest Iran. Iranian J. Parasitol. 6: 47–52
  • Stephenson S. L., Kalyanasundaram I., Lakhanpal T. N. (1993) A comparative biogeographical study of myxomycetes in the Mid-Appalachians of Eastern North America and two regions of India. J. Biogeogr. 20: 645–657
  • Timonen S., Christensen S., Flemming E. (2004) Distribution of protozoa in scots pine mycorrhizospheres. Soil Biol. Biochem. 36: 1087–1093
  • Tong S., Vørs N., Patterson D. J. (1997) Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol. 18: 91–106
  • Tyml T., Kostka M., Ditrich O., Dykova I. (2016) Vermistella arctica n. sp. nominates the genus Vermistella as a candidate for taxon with bipolar distribution. J. Eukaryot. Microbiol. 63: 210–219
  • Vørs N. (1992) Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990. Ophelia 36: 1–109
  • Walochnik J., Mulec J. (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool. 48: 25–33
  • Wilkinson D. M., Smith H. G. (2006) An initial account of the terrestrial protozoa of Ascension Island. Acta Protozool. 45: 407–413
  • Ahmad T. (2009) A study of fresh water protozoans with special reference to their abundance and ecology. J. Appl. Nat. Sci. 1: 166–169
  • Anderson O. R. (1994) Fine structure of the marine amoeba Vexillifera telmathalassa collected from a coastal site near Barbados with a description of salinity tolerance, feeding behavior and prey. J. Eukaryot. Microbiol. 41: 124–128
  • Anderson O. R. (1997) Annual abundances, diversity and growth potential of gymnamoebae in a shallow freshwater pond. J. Eukaryot. Microbiol. 44: 393–398
  • Anderson O. R. (1977) Fine structure of a marine ameba associated with a blue-green alga in the Sargasso Sea. J. Protozool. 24: 370–376
  • Anderson O. R. (2005) Effects of aqueous extracts from leaves and leaf litter on the abundance and diversity of soil gymnamoebae in laboratory microcosm cultures. J. Eukaryot. Microbiol. 52: 391–395
  • Anderson O. R. (2007) A seasonal study of the carbon content of planktonic naked amoebae in the Hudson Estuary and in a productive freshwater pond with comparative data for ciliates. J. Eukaryot. Microbiol. 54: 388–391
  • Anderson O. R. (2011) Particle-associated planktonic naked amoebae in the Hudson Estuary: Size-fractionation related densities, cell sizes and estimated carbon content. Acta Protozool. 50: 15–22
  • Anderson O. R. (2013) Naked amoebae in biofilms collected from a temperate freshwater pond. J. Eukaryot. Microbiol. 60: 429–431
  • Anderson O. R. (2016) The role of heterotrophic microbial communities in estuarine C budgets and the biogeochemical C cycle with implications for global warming: Research opportunities and challenges. J. Eukaryot. Microbiol. 63: 394–409
  • Anderson O. R., Rogerson A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson Estuary with comparative data from the Firth of Clyde. Europ. J. Protistol. 31: 223–233
  • Arndt H. (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Mar. Microb. Food Webs 7: 3–29
  • Artolozaga I., Santamaría E., López A., Begoña A., Iriberri J. (1997) Succession of bacterivorous protists on laboratory-made marine snow. J. Plankton Res. 19: 1429–1440
  • Baldock B. M., Baker J. H., Sleigh M. A. (1983) Abundance and productivity of protozoa in chalk streams. Oikos 6: 238–246
  • Bischoff P. J., Wetmore S. (2009) Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J. Eukaryot. Microbiol. 56: 397–399
  • Bischoff P. J., Horvath T. G. (2011) Abundances of naked amoebae and macroflagellates in central New York lakes: Possible effects by zebra mussels. Acta Protozool. 50: 23–31
  • Butler H. G., Rogerson A. (1995) Temporal and spatial abundance of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42: 724–730
  • Butler H. G., Rogerson A. (1996) Growth potential, production efficiency and annual production of marine benthic naked amoebae (gymnamoebae) inhabiting sediments of the Clyde Sea area, Scotland. Aquat. Microb. Ecol. 10: 123–129
  • Butler H. G., Edworthy M. G., Ellis-Evans J. C. (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshwater Biol. 43: 215–230
  • Canter H. M. (1973) A new primitive protozoan devouring centric diatoms in the plankton. Zool. J. Linn. Soc. 52: 63–83
  • Canter H. M., Lund J. W. G. (1968) The importance of Protozoa in controlling the abundance of planktonic algae in lakes. Proc. Linn. Soc. Lond. 179: 203–219
  • Caron D. A. (1991) Evolving role of protozoa in aquatic nutrient cycles. In: Protozoa and their role in marine processes. (Eds. P. C. Reid, C. M. Turley, P. H. Burkill). Berlin: Springer-Verlag, pp. 386–415
  • Caron D. A., Davis P. G., Madin L. P., Sieburth J. McN. (1982) Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797
  • Cowie P. R., Hannah F. (2006) Responses of four isolates of marine naked amoebae to reductions in salinity. J. Exptl. Mar. Biol. Ecol. 337: 196–204
  • Cowie P. R., Hannah F. (2007) Impact of laboratory-imposed physical disturbance on the abundance of four isolates of marine gymnamoebae. Mar. Biol. 151: 675–686
  • Davidson L. A., Davidson A. E. (2005) The range of protists in Mono Lake, a hypersaline soda lake in the eastern sierras. J. Eukaryot. Microbiol. 52: 11S
  • de Moraes J., Alfieri S. C. (2008) Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria. FEMS Microbiol. Ecol. 66: 221–229
  • Dirren S., Salcher M. M., Blom J. F., Schweikert M., Posch T. (2014) Ménage-á-trois: The amoeba Nuclearia sp. from Lake Zurich with its ecto- and endosymbiotic bacteria. Protist 165: 745–758
  • Dyková I., Fiala I., Divoráková H., Peckova H. (2008) Living together: The marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labryinthula sp. Europ. J. Protistol. 44: 308–316
  • Fenchel T. (2010) The life history of Flabellula baltica Smirnov (Gymnamoebae, Rhizopoda): Adaptations to a spatially and temporally heterogeneous environment. Protist 161: 279–287
  • Finlay B. J., Clarke K. J., Cowling A. J., Hindle R. M., Rogerson A., Berninger U.-G. (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Europ. J. Protistol. 23: 205–217
  • Grell K. G. (1994) The feeding community of Synamoeba arenaria n. gen., n. sp. Arch. Protistenkd. 144: 143–146
  • Hauer G., Rogerson A. (2005) Remarkable salinity tolerance of seven species of naked amoebae (gymnamoebae). Hydrobiologia 549: 33–42
  • Holt A. R., Warren P. H., Gaston K. J. (2002) The importance of biotic interactions in abundance-occupancy relationships. J. Anim. Ecol. 71: 846–854
  • Huws S. A., McBain A. J., Gilbert P. (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol. 98: 238–244
  • Jeon K. W., Jeon M. S. (1976) Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components. J. Cell Physiol. 89: 337–344
  • Jeon K. W., Lorch J. L. (1967) Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp. Cell Res. 48: 236–240
  • Johnson P. W., Sieburth J. McN. (1976) In situ morphology of nitrifying-like bacteria in aquaculture systems. Appl. Environ. Microbiol. 31: 423–432
  • Khwon W. J., Park J. S. (2017) Morphology and phylogenetic analyses of three novel Naegleria isolated from freshwaters on Jeju Island, Korea, during the winter period. J. Eukaryot. Microbiol. doi/10.1111/jeu.12434/epdf
  • Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Europ. J. Protistol. 45: 121–138
  • Kostomarova-Nikitina L. P. (1967) The effect of Amoeba verrucosa on Ascaris eggs. Med. Parazitol. (Mosk.) 36: 181–184
  • Kusch J. (1993) Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus. Oecologia 96: 354–359
  • Lawler S. P., Morin P. J. (1993) Food web architecture and population dynamics in laboratory microcosms of protists. Am. Nat. 141: 675–686
  • Laybourn-Parry J., Jones K., Holdich J. P. (1987) Grazing by Mayorella sp. (Protozoa: Sarcodina) on cyanobacteria. Funct. Ecol. 1: 99–104
  • Lesen A. E., Juhl A. R., Anderson O. R. (2010) Heterotrophic microplankton in the lower Hudson River Estuary: Potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61: 45–56
  • Ma A. T., Daniels E. F., Gulizia N., Brahamsha B. (2016) Isolation of diverse amoebal grazers of freshwater cyanobacteria for the development of model systems to study predator-prey interactions. Algal Res. 13: 85–93
  • Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coast. Shelf Sci. 46: 565–572
  • Mbugua M. W. (2008) Characterization of unusual Gymnamoebae isolated from the marine environment. Theses, Dissertations and Capstones. Paper 724, Marshall University, Huntington, W. VA., 126 pp.
  • Magnet A., Fenoy S., Galván A. L., Izquierdo F., Rueda C., Vadillo C. F., del Aguila C. (2013) A year long study of the presence of free living amoeba in Spain. Water Res. 47: 6966–6972
  • Moss A. G., Estes A. M., Muellner L. A., Morgan D. D. (2001) Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer. Hydrobiologia 452: 285–304
  • Mrva M. (2006) Diversity of gymnamoebae (Rhizopoda, Gymnamoebia) in a rain-water pool. Biologia Bratislava 61: 627–629
  • Oshima N., Takeda F., Ishii K. (1986) Responses of freshwater amoebae to salinity changes. Comp. Biochem. Physiol. 85A: 395–399
  • Parry J. D. (2004) Protozoan grazing of freshwater biofilms. Adv. Appl. Microbiol. 54: 167–196
  • Peglar M. T., Nerad T. A., Anderson O. R., Gillevet P. M. (2004) Identification of amoebae implicated in the life cycle of Pfiesteria and Pfiesteria-like dinoflagellates. J. Eukaryot. Microbiol. 51: 542–552
  • Polne-Fuller M. (1987) A multinucleated marine amoeba which digests seaweeds. J. Protozool. 34: 159–165
  • Ramirez E., Robles E., Martinez B. (2010) Free-living amoebae isolated from water-hyacinth root (Eichhornia crassipes). Exp. Parasitol. 126: 42–44
  • Rogerson A., Hannah F., Gothe G. (1996) The grazing potential of some unusual marine benthic amoebae feeding on bacteria. Europ. J. Protistol. 32: 271–279
  • Rogerson A., Williams A. G., Wilson P. C. (1998) Utilization of macroalgal carbohydrates by the marine amoeba Trichosphaerium sieboldi. J. Mar. Biol. Ass. U. K. 78: 733–744
  • Rogerson A., Anderson O. R., Vogel C. (2003) Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25: 1359–1365
  • Sawyer T. K. (1980) Marine amoebae from clean and stressed bottom sediments of the Atlantic Ocean and Gulf of Mexico. J. Protozool. 27: 13–32
  • Sawyer T. K. (2011) The influence of seawater media on growth and encystment of Acanthanoeba polyphaga. P. Helm. Soc. Wash. 37: 182–188
  • Salt G. W. (1968) The feeding of Amoeba proteus on Paramecium aurelia. J. Protozool. 15: 275–280
  • Schulz F., Tyml T., Pizzetti I., Dyková I., Fazi S., Kostka M., Horn M. (2015) Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci. Rep. 5: 13381, DOI: 10.1038/srep13381
  • Smirnov A. V. (1999) An illustrated survey of gymnamoebae isolated from anaerobic sediments of the Niva Bay (the sound) (Rhizopoda, Lobosea). Ophelia 50: 113–148
  • Smirnov A. V. (2001a) Diversity of gymnamoebae (Rhizopoda) in artificial cyanobacterial mats after four years in the laboratory. Ophelia 54: 223–227
  • Smirnov A. V. (2001b) Vannella ebro n. sp. (Lobosea, Gymnamoebia), isolated from cyanobacterial mats in Spain. Europ. J. Protistol. 37: 147–153
  • Smirnov A. V., Bedjagina O. M., Goodkov A. V. (2011) Dermamoeba algensis n. sp. (Amoebozoa, Dermamoebidae) – An algivorous lobose amoeba with complex cell coat and unusual feeding mode. Europ. J. Protistol. 47: 67–78
  • Urrutia-Cordero P., Agha R., Cirés S., Lezcano M. Á., Sánchez-Conteras M., Waara K.-O., Utkilen H., Quesada A. (2013) Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. Aquat. Toxicol. 130–131: 9–17
  • Van Wichelen J., Van Gremberghe I., Vanormelingen P., Debeer A.-E., Leporcq B., Menzel D., Codd G. A., Descy J.-P., Vyverman W. (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol. 12: 2797–2813
  • Van Wichelen J., D’Hondt S., Claeys M., Vyverman W., Berney C., Bass D., Vanormelingen P. (2016) A hotspot of amoebae diversity: 8 new naked amoebae associated with the plankton bloom-forming cyanobacterium Microcystis. Acta Protozool. 55: 61–87
  • Wang Z., Wu M. (2014) Complete genome sequence of the endosymbiont of Acanthamoeba strain UWC8, an amoeba endosymbiont belonging to the “Candidatus Midichloriaceae” family in Rickettsiales. Genome Announc. 2:e00791-14. doi:10.1128/genomeA.00791-14
  • Wörner U., Zimmerman-Timm H., Kausch H. (2000) Succession of protists on estuarine aggregates. Microb. Ecol. 40: 209–222
  • Wright S. J. L., Redhead K., Maudsley H. (1981) Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 125: 293–300
  • Xinyao L., Miao S., Yonghong L., Yin G., Zhongkai Z., Donghui W., Weizhong W., Chencai A. (2006) Feeding characteristics of an Amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: Food selection, ingestion and digestion progress. Microb. Ecol. 51: 315–325
  • Xu M., Cao H., Xie P., Deng D., Feng W., Xu J. (2005) The temporal and spatial distribution, composition and abundance of protozoa in Chaohu Lake China: Relationship with eutrophication. Europ. J. Protistol. 41: 183–192
  • Yagita K., Matias R. R., Yasuda T., Natividad F. F., Enriquez G. L., Endo T. (1995) Acanthamoeba sp. from Philippines: Electron microscopy studies on naturally occurring bacterial symbionts. Parasitol. Res. 81: 98–102
  • Yamamoto Y. (1981) Observation on the occurrence of microbial agents which cause lysis of blue-green algae in Lake Kasumigaura. Jap. J. Limnol. 42: 20–27
  • Zubkov M. V., Sleigh M. A. (1999) Growth of amoebae and flagellates on bacteria deposited on filters. Microb. Ecol. 37: 107–115
  • Amewowor D. H. A. K., Madelin M. F. (1991) Numbers of myxomycetes and associated microorganisms in the root zones of cabbage (Brassica oleracea) and broad bean (Vicia faba) in field plots. FEMS Microbiol. Ecol. 86: 69–82
  • Andersen K. S., Winding A. (2004) Non-target effects of bacterial biological control agents on soil Protozoa. Biol. Fertil. Soils 40: 230–236
  • Anderson O. R. (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: Evidence of microbiocoenoses. J. Eukaryot. Microbiol. 49: 17–23
  • Anderson O. R. (2004) The effects of release from cold stress on the community composition of terrestrial gymnamoebae: A laboratory-based ecological study simulating transition from winter to spring. Acta Protzool. 43: 21–28
  • Anderson O. R. (2008) The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: Biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. J. Eukaryot. Microbiol. 55: 145–150
  • Anderson O. R. (2010) An analysis of respiratory activity, Q10, and microbial community composition of soils from high and low tussock sites at Toolik, Alaska. J. Eukaryot. Microbiol. 57: 218–219
  • Anderson O. R. (2012) The fate of organic sources of carbon in moss-rich tundra soil microbial communities: A laboratory experimental study. J. Eukaryot. Microbiol. 59: 564–570
  • Anderson O. R. (2014) The role of soil microbial communities in soil carbon processes and the biogeochemical carbon cycle. In: Soil Carbon: Types, Management Practices and Environmental Benefits. (Ed. A. Margit). New York, Nova Publishers. pp. 1–50
  • Anderson O. R. (2016) Experimental evidence for non-encysted, freeze-resistant stages of terrestrial naked amoebae capable of resumed growth after freeze-thaw events. Acta Protozool. 55: 19–25
  • Anderson O. R., Gorrell T., Bergen A., Kruzansky R., Levandowsky M. (2001) Naked amoebas and bacteria in an oil-impacted salt marsh community. Microb. Ecol. 42: 474–481
  • Anderson O. R., Griffin K. (2001) Abundances of protozoa in soil of laboratory-grown wheat plants cultivated under low and high atmospheric CO2 concentrations. Protistology 2: 76–84
  • Anderson O. R., Juhl A. R., Bock N. (2017) Effects of organic carbon enrichment on respiration rates, phosphatase activities, and abundance of heterotrophic bacteria and protists in organic-rich Arctic and mineral-rich temperate soil samples. Polar Biology, DOI 10.1007/s00300-017-2166-4
  • Anderson R. V., Elliott E. T., McClellan J. F., Coleman D. C., Cole C. V., Hunt H. W. (1977–1978) Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes. Microb. Ecol. 4: 361–371
  • Anderson T. R., Patrick Z. A. (1978) Mycophagous amoeboid organisms from soil that perforate spores of Thielaviopsis basicola and Cochliobolus sativus. Phytopathology 68: 1618–1626
  • Andriuzzi W. S., Ngo P.-T., Geisen S., Keith A. M., Dumack K., Bolger T., Bonkowski M., Brussaard L., Faber J. H., Chabbi A., Rumpel C., Schmidt O. (2016) Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol. Fertil. Soils 52: 91–100
  • Bamforth S. S. (1988) Interactions between Protozoa and other organisms. Agr. Ecosyst. Environ. 24: 229–234
  • Band N. R. (1995) ELF communications system ecological monitoring program: Soil amoeba – final report. Technical Report D06214-1. IIT Research Institute, Chicago ILL., 97 pp.
  • Barrett R. A., Alexander M. (1977) Resistance of cysts of amoebae to microbial decomposition. Appl. Environ. Microbiol. 33: 670–674
  • Bischoff P. J. (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozool. 41: 183–189
  • Bischoff P. J., Connington K. (2016) Winter abundances of naked amoebae in the soil system of the invasive species Japanese knotweed (Fallopia japonica) with comparative data from adjacent sites. Acta Protozool. 55: 155–160
  • Bonkowski M. (2004) Protozoa and plant growth: The microbial loop in soil revisited. New Phytol. 162: 617–631
  • Bonkowski M., Schaefer M. (1997) Interactions between earthworms and soil protozoa: A trophic component in the soil food web. Soil Biol. Biochem. 29: 499–502
  • Bryant R. J., Woods L. E., Coleman D. C., Fairbanks B. C., McClellan J. F., Cole C. V. (1982) Interactions of bacterial and amoebal populations in soil microcosms with fluctuating moisture content. Appl. Environ. Microbiol. 43: 747–752
  • Cervero-Arago S., Rodíguez-Martinez S., Canals O., Salvadó H., Araujo R. M. (2013) Effect of thermal treatment on free-living amoeba inactivation. J. Appl. Microbiol. 116: 728–736
  • Chakraborty S., Theodorou C., Bowen G. D. (1985) The reduction of root colonization by mycorrhizal fungi by mycophagous amoebae. Can. J. Microbiol. 31: 295–297
  • Clarholm M. (1981) Protozoan grazing of bacteria on soil-impact and importance. Microb. Ecol. 7: 343–350
  • Coleman D. C., Cole C. V., Anderson R. V., Blaha M., Campion M. K., Clarholm M., Elliott E. T., Hunt H. W., Shaefer B., Sinclair J. (1977) An analysis of rhizosphere-saprophage interactions in terrestrial ecosystems. Ecol. Bull. (Stockholm) 25: 299–309
  • Cortés-Pérez S., Rodríguez-Zaragoza S., Mendoza-López Ma. R. (2014) Trophic structure of amoeba communities near roots of Medicago sativa after contamination with Fuel Oil No. 6. Microb. Ecol. 67: 430–442
  • Danso S. K. A., Keya S. O., Alexander M. (1975) Protozoa and the decline of Rhizobium populations added to soil. Can. J. Microbiol. 21: 884–895
  • Darby B. (2008) Influence of altered temperature and precipitation on desert microfauna and their role in mediating soil nutrient availability. Graduate College Dissertations and Theses, Paper 64, University of Vermont, 182 pp.
  • Darbyshire J. F. (2005) The use of biofilms for observing protozoan movement and feeding. FEMS Microbiol. Lett. 244: 329–333
  • Darbyshire J. F., Greaves M. P. (1967) Protozoa and bacteria in the rhizosphere of Sinapis alba L., Trifolium repens L., and Lolium perenne L. Can. J. Microbiol. 13: 1057–1068
  • Darbyshire J. F., Davidson M. S., Scott N. M., Shipton P. J. (1977) Some microbial and chemical changes in soil near the roots of spring barley, Hordium vulgare L. infected with take-all-disease. Ecol. Bull. 25: 374–380
  • Denet E., Coupat-Goutaland B., Nazaret S., Pélandakis M., Favre-Bonté S. (2017) Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol. Res. 116: 3151–3162
  • Dreschler C. (1969) A Tulsanella parasitic on Amoeba terricola. Amer. J. Bot. 56: 1217–1220
  • Dupont A. Ö. C., Girffiths R. I., Bell T., Bass D. (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ. Microbiol. 18: 2010–2024
  • Ekelund F., Olsson S., Johansen A. (2003) Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35: 1507–1516
  • Ekelund F., Saj S., Vestergård M., Bertaux J., Mikola J. (2009) The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol. Biochem. 41: 2336–2342
  • Elliott E. T., Cole C. V., Coleman D. C., Anderson R. V., Hunt H. W., McClellan J. F. (1979) Amoebal growth in soil microcosms: A model system of C, N, and P trophic dynamics. Intern. J. Environmental Studies 13: 169–174
  • Elliott E. T., Anderson R. V., Coleman D. C., Cole C. V. (1980) Habitable pore space and microbial trophic interactions. Oikos 35: 327–335
  • Finlay B. J., Black H. I. J., Brown S., Clarke K. J., Esteban G. F., Hindle R. M., Olmo J. L., Rollett A., Vickerman K. (2000) Estimating the growth potential of the soil protozoan community. Protist 151: 69–80
  • Gabilondo R., Fernández-Montiel I., Garcia-Barón I., Bécares E. (2015) The effects of experimental increases in underground carbon dioxide on edaphic protozoan communities. Int. J. Greenh. Gas Con. 41: 11–19
  • Georgieva S., Christensen S., Petersen H., Gjelstrup P., Thorup-Kristensen K. (2005) Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biol. Biochem. 37: 1145–1155
  • Geisen S., Bandow C., Römbke J., Bonkowski M. (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57: 205–213
  • Geisen S., Koller R., Hünninghaus M., Dumack K., Urich T., Bonkowski M. (2016) The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol. Biochem. 94: 10–18
  • Gould W. D., Coleman D. C., Rubink A. J. (1979) Effect of bacteria and amoebae on rhizosphere phosphatase activity. Appl. Environ. Microbiol. 37: 943–946
  • Greub G., La Scola B., Raoult D. (2003). Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann. N. Y. Acad. Sci. 990: 628–634
  • Grün A.-L., Sheid P., Hauröder B., Emmerling C., Manz W. (2017) Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. J. Plant Nutr. Soil Sci. 180: 602–613
  • Horn M., Wagner M. (2004) Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol. 51: 509–514
  • Jahnke J., Wehren T., Priefer U. B. (2007) In vitro studies of the impact of the naked soil amoeba Thecamoeba similis Greef, feeding on phototrophic soil biofilms. Europ. J. Soil Biol. 43: 14–22
  • Jousset A. (2012) Ecological and evolutive implications of bacterial defences against predators. Environ. Microbiol. 14: 1830–1843
  • Koller R. (2008) Amoebae in the rhizosphere and their interactions with arbuscular mycorrhizal fungi: effects on assimilate partitioning and nitrogen availability for plants. Doctor of Sciences Thesis, Technische Universität, Darmstadt, 116 pp.
  • Koller R., Scheu S., Bonkowski M., Robin C. (2013) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol. Biochem. 65: 204–210
  • Krome K., Rosenberg K., Bonkowski M., Scheu S. (2009) Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thaliana. Soil Biol. Biochem. 41: 1866–1873
  • Laird D. D. (1966) The pitcher plant, Sarracenia purpurea L., as an ecosystem. M. S. Thesis, The University of British Columbia, Vancouver, CA, 82 pp.
  • Lin B., Zhao X., Zheng Y., Qi S., Liu X. (2017) Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan plateau. J. Soil. Sed. 12: 2752–2762
  • Liao Q. Y., Li J., Zhang J. H., Li M., Lu Y., Xu R. I. (2009) An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Europ. J. Soil Biol. 45: 214–219
  • Michel R., Walochnik J., Scheid P. (2014) Article for the “Free-living amoebae Special Issue”: Isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp. Parasitol. 145: S131–S136
  • Monroy F., Aira M., Dominguez J. (2008) Changes in the density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol. 39: 127–132
  • Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebia) in mosses of the Malé Karpaty Mts (Slovakia). Ekológia (Bratislava) 24: 51–58
  • Mulec J., Dietersdorfer E., Üstüntürk-Onan M., Walochnik J. (2016) Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol. Res. 115: 1375–1383
  • Murase J., Frenzel P. (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol. Ecol. 65: 408–414
  • Neidig N., Jousset A., Nunes F., Bonkowski M., Rüdiger J. P., Scheu S. (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct. Ecol. 24: 1133–1138
  • Okafor N. (1966) Ecology of micro-organisms on chitin buried in soil. J. Gen. Microbiol. 44: 311–327
  • Old K. M., Darbyshire J. F. (1978) Soil fungi as food for giant amoebae. Soil Biol. Biochem. 10: 93–100
  • Orosz E., Farkas A., Ködöböcz L., Becságh P., Danka J., Kucsera I., Füleky G. (2013) Isolation of Acanthamoeba from the rhizosphere of maize and lucerne plants. Acta Microbiol. Imm. H. 60: 29–39
  • Parker L. W., Freckman D. W., Steinberger Y., Driggers L., Whitford W. G. (1984a) Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora, and Protozoa. Pedobiologia 27: 185–195
  • Parker L. W., Santos P. F., Phillips J., Whitford W. G. (1984b) Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan Desert annual. Lepidium lastocarpum. Ecol. Monogr. 54: 339–360
  • Persson T., Bååth E., Clarholm M., Lundkvist H., Söderström B. E., Sohlenius B. (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a scots pine forest. Ecol. Bull. 32: 419–459
  • Qi S., Zheng H., Lin Q., Li G., Xi Z., Zhao X. (2011) Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant Soil 340: 117–126
  • Rodriguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb. Ecol. 49: 134–141
  • Rodriguez-Zaragoza S., Whitford W. G., Steinberger Y. (2007) Effects of temporally persistent ant nests on soil protozoan communities and the abundance of morphological types of amoeba. Appl. Soil Ecol. 37: 81–87
  • Rogerson A. (1982) An estimate of the annual production and energy flow of the large naked amoebae population inhabiting a Sphagnum bog. Archiv f. Protistenk. 126: 145–149
  • Rønn R., Gavito M., Larsen J., Jakobsen I., Frederiksen H., Christensen S. (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol. Biochem. 34: 923–932
  • Schnürer J., Clarholm M., Rosswall T. (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 17: 611–618
  • Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Gilichinsky D. A. (2009) Chapter 8: Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin). Springer-Verlag, Berlin, pp. 97–115
  • Stapleton L. M., Crout N. M. J., Säwström C., Marshall W. A., Poulton P. R., Tye A. M., Laybourn-Parry J. (2005) Microbial carbon dynamics in nitrogen amended Arctic tundra soil: Measurement and model testing. Soil Biol. Boiochem. 37: 2088–2098
  • Stout J. D. (1984) The protozoan fauna of a seasonally inundated soil under grassland. Soil Biol. Biochem. 16: 121–125
  • Takenouchi Y., Iwasaki K., Murase J. (2016) Response of the protistan community of a rice field soil to different oxygen tensions. FEMS Micriobiol. Ecol. 92, doi: 10.1093/femsec/fiw104
  • Vargas R., Hattori T. (1990) The distribution of protozoa among soil aggregates. FEMS Microbiol. Ecol. 74: 73–78
  • Weekers P. H. H., Engelberts A. M. W., Vogels G. D. (1995) Bacteriolytic activities of the free-living soil amoebae, Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmannella vermiformis. A. Van Leeuw. 68: 237–243
  • Weidner S., Latz E., Agaras B., Valverde C., Jousset A. (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410: 509–515
  • Zahn G., Wagai R., Yonemura S. (2016) The effects of amoebal bacterivory on carbon and nitrogen dynamics depend on temperature and soil structure interactions. Soil Biol. Biochem. 94: 133–137
  • Zhang S.-H., Cao Z.-P., Cheng Y.-F., Zhang G. (2012) Change of soil protozoa community structure under different farming practices. J. Anim. Vet. Adv. 17: 3140–3147
  • Adam K. M. G., Blewett D. A. (1967) Carbohydrate utilization by the soil amoeba Hartmannella castellanii. J. Protozool. 14: 277–282
  • Ahmad M., Couillard P. (1974) The contractile vacuole in Amoeba proteus: Temperature effects. J. Protozool. 21: 330–336
  • Ahn T. I., Jeon K. W. (1979) Growth and electron microscopic studies on an experimentally established bacterial endosymbiosis in amoebae. J. Cell Physiol. 98: 49–58
  • Anderson O. R. (2006) A method for estimating cell volume of amoebae based on measurements of cell length of motile forms: Physiological and ecological applications. J. Eukaryot. Microbiol. 53: 185–187
  • Anderson O. R., McGuire K. (2013) C-biomass of bacteria, fungi, and protozoan communities in Arctic tundra soil, including trophic relationships. Acta Protozool. 52: 217–227
  • Avery S. V., Harwood J. L., Lloyd D. (1995) Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl. Environ. Microbiol. 61: 1124–1132
  • Baldock B. M., Rogerson A., Berger J. (1982) Further studies on respiratory rates of freshwater amoebae (Rhizopoda, Gymnamoebia). Microb. Ecol. 8: 55–60
  • Barberá M. J., Ruiz-trillo I., Tufts J. Y. A., Bery A., Silberman J. D., Roger A. J. (2010) Sawyeria marylandensis (Heterolobosea) has hydrogenosome with novel metabolic properties. Eukaryot. Cell 9: 1913–1924
  • Bunt J. S. (1970) Preliminary observations on the growth of a naked marine ameba. Bull. Mar. Sci. 20: 315–330
  • Butler H., Rogerson A. (1997) Consumption rates of six species of marine benthic naked amoebae (Gymnamoebia) from sediments in the Clyde Sea area. J. Mar. Biol. Ass. U.K. 77: 989–997
  • Cann J. P. (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida). J. Protozool. 33: 392–396
  • Chang N.-K., Lim C.-S., Bae J.-H. (1991) The characterization and activity changes of phosphatases in Amoeba sp. to the light stimuli and its response pattern. Korean J. Ecol. 14: 101–111 (in Korean with English Abstract)
  • Chapman-Andresen C. (1971) Biology of the large amoebae. Ann. Rev. 25: 27–48
  • Chattergee S. (1989) Pinocytosis in heterospecific amoebae. Cell Biol. Int. Reps. 13: 271–274
  • Christiansen R. G., Marshall J. M. (1965) A study of phagocytosis in the ameba Chaos chaos. J. Cell Biol. 25: 443–457
  • Cometa I., Schatz S., Trzyna W., Rogerson A. (2011) Tolerance of naked amoebae to low oxygen levels with an emphasis on the genus Acanthamoeba. Acta Protozool. 50: 33–41
  • Crawford D. W., Rogerson A., Laybourn-Parry J. (1994) Respiration of the marine amoeba Trichosphaerium sieboldi determined by 14C labelling and Cartesian diver methods. Mar. Ecol. Prog. Ser. 112: 135–142
  • Delafont V., Samba-Louaka A., Bouchon D., Laurent M., Héchard Y. (2015) Shedding light on microbial dark matter: A TM6 bacterium as natural endosymbiont of a free-living amoeba. Env. Microbiol. Rep. 7: 970–978
  • Dolphin W. D. (1970) Photoinhibition of growth in Acanthamoeba castellanii cultures. J. Bacteriol. 103: 755–760
  • Drainville G., Gagnon A. (1973). Osmoregulation in Acanthamoeba castellanii – I. Variations of the concentrations of free intracellular amino acids and of the water content. Comp. Biochem. Physiol. 45A: 379–388
  • Geoffrion Y., Larochelle J. (1984) The free amino acid contribution to osmotic regulation in Acanthamoeba castellanii. Can. J. Zool. 62: 1954–1959
  • Goodall R. J., Thompson J. E. (1971) A scanning electron microscopic study of phagocytosis. Exptl. Cell Res. 64: 1–8
  • Gutiérrez G., Chistyakova L. V., Villalobo E., Kostygov A. Y., Frolov A. O. (2017) Identification of Pelomyxa palustris endosymbionts. Protist 168: 408–424
  • Halvey S., Finkelstein S. (1965) Lipid composition of soil amoebae. J. Protozool. 12: 250–252
  • Hansson S. E., Johansson G., Josefsson J.-O. (1968) Oxygen uptake during pinocytosis in Amoeba proteus. Acta Physiol. Scand. 73: 491–500
  • Heal O. W. (1967) Quantitative studies on soil amoebae. In: Progress in soil biology (Ed. O. Graff, J. E. Satchell), North Holland Publishing Corp., Amsterdam, pp. 120–125
  • Jeon K. W., Jeon M. S. (1976) Scanning electron microscope observations of Amoeba proteus during phagocytosis. J. Protozool. 23: 83–86
  • Josefsson J.-O. (1968) Induction and inhibition of pinocytosis in Amoeba proteus. Acta Physiol. Scand. 73: 481–490
  • Kühn S. F. (1996/97) Rhizamoeba schepfii sp. nov., a naked amoeba feeding on marine diatoms (North Sea, German Bight). Arch. Protistenkd. 147: 277–282
  • Landau J. V. (1965) High hydrostatic pressure effects on Amoeba proteus: Changes in shape, volume, and surface area. J. Cell Biol. 24: 332–336
  • Larochelle J., Gagnon A. (1978) Osmoregulation in Acanthamoeba castellanii – III. Relations between dry weight, water, and inorganic ions, and control of the ionic levels. Comp. Biochem. Physiol. 59A: 119–123
  • Leger M. M., Gawryluk R. M. R., Gray M. W., Roger A. J. (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 8(9): e69532. doi:10.1371/journal.pone.0069532
  • Lima P. C., Taylor R. S., Cook M. (2016) Involvement of contractile vacuoles in the osmoregulation process of the marine parasitic amoeba Neoparamoeba perurans. J. Fish Dis. 39: 629–633
  • Liu C.-H., Fong B. A., Alfano S. A., Rakhlin I., Wang W. B., Ni X. H., Yang Y. L.., Zhou F., Zuzolo R. C., Alfano R. R. (2011) Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy. Proc. SPIE 7895, Optical Biopsy IX, 78950Y (17 February 2011), doi:10.1117/12.875293
  • Mayes D. F., Rogerson A., Marchant H., Laybourn-Parry J. (1997) Growth and consumption rates of bacterivorous Antarctic naked marine amoebae. Mar. Ecol. Prog. Ser. 160: 101–108
  • Michel R., Hauröder B., Müller K.-D. (2010) Saccamoeba limax (Hartmannellidae) isolated from Elodea sp. was colonized by two strains of endocytic bacteria and a bacteriophage. Endocyt. Cell Res. 20: 38–44
  • Müller M. (1969a) Peroxisomes of protozoa. Ann. N. Y. Acad. Sci. 168: 292–301
  • Müller M. (1969b) Lysosomal hydrolases in Acanthamoeba sp. J. Protozool. 16: 428–431
  • Müller M. (1985) Search for cell organelles in protozoa. J. Protozool. 32: 559–563
  • Nachmias V. T. (1986) A study by electron microscopy of the formation of new surface by Chaos Chaos. Exp. Cell Res. 43: 583–601
  • Old K. M., Chakraborty S., Giggs R. (1985) Fine structure of a new mycophagous amoeba and its feeding on Cochliobolus sativus. Soil Biol. Biochem. 17: 645–655
  • Page F. C. (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) Species distinctions, locomotive morphology, and protozoan prey. J. Nat. Hist. 11: 25–63
  • Pal R. A. (1972) The osmoregulatory system of the amoeba, Acanthamoeba castellanii. J. Exp. Biol. 57: 55–76
  • Patsyuk M. (2013) Tolerance of naked amoebas (Protista) to the abiotic factors. Nat. Montenegr. 12: 319–323
  • Pickup Z. L., Pickup R., Parry J. D. (2007) A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella veriformis in the presence of suspended and attached Escherichia coli K12. FEMS Microbiol. Ecol. 59: 556–563
  • Pigon A. (1970) Hartmannella: Growth controlling substances in culture medium. Protoplasma 70: 405–414
  • Prescott L. M., Lottman J. K., Vance P. L. (1974) Carbohydrate metabolism in Acanthamoeba castellanii – II. Carbon dioxide fixation reactions. Comp. Biochem. Physiol. 48B: 205–209
  • Prusch R. D., Hannafin J. A. (1979) Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J. Gen. Physiol. 74: 523–535
  • Riddick D. H. (1968) Contractile vacuole in the amoeba, Pelomyxa carolinensis. Am. J Physiol. 215: 736–740
  • Rogerson A. (1979) Energy content of Amoeba proteus and Tetrahymena pyriformis (Protozoa). Can. J. Zool. 57: 2463–2465
  • Rogerson A. (1981) The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia 85: 117–128
  • Rogerson A., Butler H. G., Thompson J. C. (1994) Estimation of amoeba cell volume from nuclear diameter and its application to studies in protozoan ecology. Hydrobiologia 284: 229–234
  • Ryter A., Bowers B. (1976) Localization of acid phosphatase in Acanthamoeba castellanii with light and electron microscopy during growth and after phagocytosis. J. Ultrastruct. Res. 57: 309–321
  • Schuster F. L. (1979) Small amebas and ameboflagellates. In: Biochemistry and Physiology of Protozoa (2nd Ed., Vol. 1), (Ed. M. Levandowsky, H. M. Hutner), Academic Press, New York, pp. 216–287
  • Schulz F., Lagkouvardos I., Wascher F., Aistleitner K., Kostanjsek R., Horn M. (2014) Life in an unusual intracellular niche: A bacterial symbiont infecting the nucleus of amoebae. ISME J. 8: 1634–1644
  • Sopina V. A. (2003) Activity and thermostability of acid phosphatase in Amoebae Amoeba proteus cultured at different temperatures. J. Evol. Biochem. Phys. 39: 405–415
  • Tomlinson G. (1967) The glyoxylate pathway in Acanthamoeba sp. J. Protozool. 14: 114–116
  • Weik R. R., John D. T. (1977) Cell size, macromolecular composition, and O2 consumption during agitated cultivation of Naegleria gruberi. J. Protozool. 24: 196–200
  • Whatley J. M. (1976) Bacteria and nuclei in Pelomyxa palustris: Comments on the theory of serial endosymbiosis. New Phytol. 76: 111–120
  • Wigg D., Bovee E. C., Jahn T. L. (1967) Evacuation mechanism of the water expulsion vesicle (“contractile vacuole”) of Amoeba proteus. J. Protozool. 14: 104–108
  • Wilkins J. A., Thompson J. E. (1974) The effects of cell population density on the plasma membrane of Acanthamoeba castellanii. Exp. Cell Res. 89: 143–153
  • Allen R. D. (1972) Pattern of birefringence in the giant amoeba, Chaos carolinensis. Exp. Cell Res. 72: 34–45
  • Anderson O. R. (2010) Field and laboratory studies of encysted and trophic stages of naked amoebae: Including a perspective on population life cycle dynamics. Acta Protozool. 49: 1–8
  • Akins R. A., Gozs S. M., Byers T. J. (1985) Factors regulating the encystment enhancing activity (EEA) of Acanthamoeba castellanii. J. Gen. Microbiol. 131: 2609–2617
  • Baldock B. M, Berger J. (1984) The effects of low temperatures on the growth of four fresh-water amoebae (Protozoa: Gymnamoebia). Trans. Am. Microsc. Soc. 103: 233–239
  • Baldock B. M., Baker J. H., Sleigh M. A. (1980) Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia 47: 156–159
  • Band R. N., Mohrlok S. (1969) The respiratory metabolism of Acanthamoeba rhysodes during encystation. J. Gen. Microbiol. 59: 351–358
  • Berney C., Geisen S., Van Wichelen J., Nitsche F., Vanormelingen P., Bonkowski M., Bass D. (2015) Expansion of the ‘Reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea. Protist 166: 271–295.
  • Bowen S. M., Griffiths A. J., Lloyd D. (1969) Enzyme distribution in an amoeba during encystment. Biochem. J. 115: 41P–42P
  • Brewer J. E., Bell L. G. E. (1969) Pseudopodium induction by the action of quaternary ammonium ions on Amoeba proteus. J. Cell Sci. 4: 17–24
  • Cavalier-Smith T., Chao E. E., Lewis R. (2016) 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99: 275–296
  • Chambers J. A., Thompson J. E. (1972) A scanning electron microscopic study of the excystment process of Acanthamoeba castellanii. Exp. Cell Res. 73: 415–421
  • Datta T. (1979) Effect of organic and inorganic compounds and carbon dioxide in the excystment of soil amoebae. Archiv f. Protistenk. 121: 155–161
  • Dembo M. (1989) Mechanics and control of the cytoskeleton in Amoeba proteus. Biophys. J. 55: 1053–1080
  • Feldherr C. M. (1968) Changes in the nuclear envelope of amoeba during mitosis. J. Cell Biol. 39: 49–54
  • Héchard Y. (2012) Cellular, biochemical and molecular changes during encystment of free-living amoebae. Eukaryot. Cell 11: 382–387
  • Fouque E., Trouilhe M.-C., Thomas V., Hartemann P., Rodier M.-H., Héchard Y. (2014a) Encystment of Vermamoeba (Hartmannella) vermiformis: Effects of environmental conditions and cell concentration. Exp. Parasitol. 145: 562–568
  • Fouque E., Yefimova M., Trouilhe M.-C., Quellard N., Fernandez B., Rodier M.-H., Thomas V., Humeau P., Héchard Y. (2014b) Morphological study of the encystment and excystment of Vermamoeba vermiformis revealed original traits. J. Eukaryot. Microbiol. 62: 327–337
  • Grebecki A. (1982) Supramolecular aspects of amoeboid movement. Acta Protozool. Proceedings of VI International Congress of Protozoology, part I, pp. 117–130
  • Griffiths A. J. (1969) Encystment in amoebae. Adv. Microbial Physiol. 4: 105–129
  • Griffiths A. J., Bowen S. M. (1969) Lysosomal activity and its control in encysting Hartmannella castellanii. J. Gen. Microbiol. 59: 239–245
  • Griffiths A. J., Hughes D. E. (1969) The physiology of encystment of Hartmannella castellanii. J. Protozool. 16: 93–99
  • Holberton D. (1969) Microtubules in the cytoplasm of an amoeba. Nature 222: 680–681
  • Jahn T. L., Votta J. J., Kirby G. S., Rinaldi R. A., Cameron I. L., Allen R. D., Zeh R., Condellis J., Francis D. W. (1972) Capillary suction test of the pressure gradient theory of amoeboid motion. Science 177: 636–638
  • Jeon K. W., Bell L. G. E. (1965) Chemotaxis in a large, free-living amoebae. Exp. Cell Res. 38: 536–555
  • Jones P. C. T. (1966) A contractile protein model for cell adhesion. Nature 212: 365–369
  • Kang S., Tice A. K., Spiegel F. W., Silberman J. D., Pánek T., Cepicka I., Kostka M., Kosakyan A., Alcântara D. M. C., Roger A. J., Shadwick L. L., Smirnov A., Kudryavtsev A., Lahr D. J. G., Brown M. W. (2017) Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34: 2258–2270
  • King C. A., Preston T. M., Miller R. H. (1983) Cell-substrate interactions in amoeboid locomotion – a matched reflexion interference and transmission electron microscopy study. Cell Biol. Int. Rep. 7: 641–649
  • Klopocka W., Stockem W. (1989) High temperature-induced changes in the organization of the microfilament system and cell membrane activity in Amoeba proteus. Europ. J. Protistol. 24: 145–151
  • Lahr D. J. G., Parfrey L. W., Mitchell E. A. D., Katz L. A., Lara E. (2011) The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proc. R. Soc. B 278: 2081–2090
  • Lasman M. (1982) The fine structure of Acanthamoeba astronyxis, with special emphasis on encystment. J. Protozool. 29: 458–464
  • Lasman M., Shafran A. (1978) Induction of encystment in Acanthamoeba palestinensis. Factors influencing cyst formation. J. Protozool. 25: 489–491
  • Leitsch D., Köhsler M., Marchetti-Deschman M., Deutsch A., Günter A., Duchêne M., Walochnik J. (2010) Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot. Cell 9: 611–618
  • Lemgruber L., Lupetti P., De Souza W., Vommaro R. C., da Rocha-Azevedo B. (2010) The fine structure of Acanthamoeba polyphaga cyst wall. FEMS Microbiol. Lett. 305: 170–176
  • Lloyd D. (2014) Encystment in Acanthamoeba castellanii: A review. Expt. Parasitol. 145: S20–S27
  • Lorch I. J. (1969) The rate of attachment of amoebae to the substratum: A study of nuclear-cytoplasmic relationships. J. Cell Physiol. 73: 171–178
  • Maciver S. K. (2016) Asexual amoebae escape Muller’s ratchet through polypoidy. Trends Parasitol. 32: 855–862
  • Martin R. E. (1987) Adhesion, morphology, and locomotion of Paramoeba pemaquidensis Page (Amoebida, Paramoebidae): Effects of substrate charge density and external cations. J. Protozool. 34: 345–349
  • Martin S. M., Byers T. J. (1976) Acid hydrolase activity during growth and encystment in Acanthamoeba castellanii. J. Protozool. 23: 608–613
  • McIntyre J., Jenkin C. R. (1969) Chemotaxis in the free-living amoeba Hartmannella rhysodes. Aust. J. Exp. Med. Sci. 47: 625–632
  • Moon E.-K., Hong Y., Chung D.-I., Kong H.-H. (2012) Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol. Biochem. Parasit. 185: 121–126
  • Nohmi M., Tawada K. (1974) The negatively charged protein extracted from Tetrahymena pyriformis as an attractant in Amoeba proteus chemotaxis. J. Cell Physiol. 84: 135–140
  • Ord M. J. (1969) Control of DNA synthesis in Amoeba proteus. Nature 221: 964–966
  • Park J. T., Jeong Y. E., Ahn T. I. (2002) Changes in profiles of major proteins in encysting Acanthamoeba castellanii. Korean J. Biol. Sci. 6: 341–347
  • Pasternak J. J., Thompson J. E., Schultz T. M. G., Zachariah K. (1970) A scanning electron microscopic study of the encystment of Acanthamoeba castellanii. Exp. Cell Res. 60: 290–298
  • Pauls K. P., Thompson J. E. (1981) Regulation of fatty acid unsaturation in encysting Acanthamoeba cells. Curr. Microbiol. 5: 129–132
  • Pigon A. (1972) Inhibition of movement, attachment, and cytokinesis by autogenous substances in the Amoeba Hartmannella. Exp. Cell Res. 73: 170–176
  • Przelecka A., Sobota A. (1982) Growth phase dependent alterations in the surface coat of Acanthamoeba castellanii. Acta Histochem. 71: 219–229
  • Rogerson A. (1980) Generation times and reproductive rates of Amoeba proteus (Leidy) as influenced by temperature and food concentration. Can. J. Zool. 58: 543–548
  • Ron A., Prescott D. M. (1969) The timing of DNA synthesis in Amoeba proteus. Expt. Cell Res. 56: 430–434
  • Röpstorf P., Hülsmann N., Hausmann K. (1993) Karyological investigations on the vampyrellid filose amoeba Lateromyxa gallica Hülsmann 1993. Europ. J. Protistol. 29: 302–310
  • Schuster F. L. (1975) Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. Tissue Cell 7: 1–12
  • Stevens A. R., Pachler P. F. (1973) RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellanii. J. Cell Biol. 57: 525–537
  • Stratford M. P., Griffiths A. J. (1971) Excystment of the amoeba Hartmannella castellanii. J. Gen. Microbiol. 66: 247–249
  • Sykes D. E., Band R. N. (1985) Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. J. Protozool. 32: 512–517
  • Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. (1973) The contractile basis of amoeboid movement. J. Cell Biol. 59: 378–394
  • Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ upn removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol. 47: 339–352
  • Tekle Y. I., Anderson O. R., Lecky A. F. (2014) Evidence of parasexual activity in “Asexual amoebae” Cochliopodium spp. (Amobozoa): Extensive cellular and nuclear fusion. Protist 165: 676–687
  • Tekle Y. I., Williams J. R. (2017) Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. Royal Soc. Open Sci. 3: 160283, DOI: 10.1098/rsos.160283
  • Tekle Y. I., Wood F. C., Katz L. A., Cerón-Romero M. A., Gorfu L. A. (2017) Amoebozoans are secretly but ancestrally sexual: Evidence for sex genes and potential novel crossover pathways in diverse groups of amoebae. Genome Biol. Evol. 9: 375–387
  • Tice A. K., Shadwick L. L., Fiore-Donno A. M., Geisen S., Kang S., Schuler G. A., Speigel F. W., Wilkinson K. A., Bonkowski M., Dumack K., Lahr D. J. G., Voelcker E., Clauss S., Zhang J., Brown M. W. (2016) Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Ameobozoa) and identification of a novel life cycle type within the group. Biology Direct 11: 69, doi.org/10.1186/s13062-016-0171-0
  • Turner N. A., Biagni G. A., Lloyd D. (1997) Anaerobiosis-induced differentiation of Acanthamoeba castellanii. FEMS Microbiol. Lett. 157: 149–153
  • Yang S., Villemez C. (1994) Cell surface control of differentiation in Acanthamoeba. J. Cell. Biochem. 56: 592–596
  • Weisman R. A., Spiegel R. S., McCauley J. G. (1970) Differentiation in Acanthamoeba: Glycogen levels and glycogen synthetase activity during encystment. Biochem. Biophys. Acta 201: 45–53

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
52159038

YADDA identifier

bwmeta1.element.ojs-doi-10_4467_16890027AP_18_001_8395
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.