Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 56 | 3 | 191-210

Article title

Response of Sphagnum Testate Amoebae to Drainage, Subsequent Re-wetting and Associated Changes in the Moss Carpet – Results from a Three Year Mesocosm Experiment

Content

Title variants

Languages of publication

Abstracts

EN
Sphagnum peatlands represent a globally significant pool and sink of carbon but these functions are threatened by ongoing climate change. Testate amoebae are useful bioindicators of hydrological changes, but little experimental work has been done on the impact of water table changes on communities. Using a mesocosm experimental setting that was previously used to assess the impact of drought disturbance on communities and ecosystem processes with three contrasted water table positions: wet (–4 cm), intermediate (–15 cm) and dry (–25 cm), we studied the capacity of testate amoeba communities to recover when the water table was kept at –10 cm for all plots. The overall experiment lasted three years. We assessed the taxonomic and functional trait responses of testate amoeba communities. The selected traits were hypothesised to be correlated to moisture content (response traits: shell size, aperture position) or trophic role (effect traits: mixotrophy, aperture size controlling prey range). During the disturbance phase, the mixotrophic species Hyalosphenia papilio dominated the wet and intermediate plots, while the community shifted to a dominance of “dry indicators” (Corythion dubium, Nebela tincta, Cryptodifflugia oviformis) and corresponding traits (loss of mixotrophy, and dominance of smaller taxa with ventral or ventral-central aperture) in dry plots. During the recovery phase we observed two contrasted trends in the previously wet and intermediate plots: communities remained similar where the Sphagnum carpet remained intact but species and traits indicators of drier conditions increased in plots where it had degraded. In the former dry plots, indicators and traits of wet conditions increased by the end of the experiment. This is one of the first experiment simulating a disturbance and subsequent recovery in ex-situ mesocosms of Sphagnum peatland focusing on the response of testate amoebae community structure as well as functional traits to water table manipulation. The results generally confirmed that testate amoebae respond within a few months to hydrological changes and thus represent useful bioindicators for assessing current and past hydrological changes in Sphagnum peatlands.  

Year

Volume

56

Issue

3

Pages

191-210

Physical description

Dates

published
2017

Contributors

  • Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
  • Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
  • Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
  • Station biologique, Adaptation et diversité en milieu marin, Evolution des Protistes et Ecosystèmes Pélagiques, Roscoff, France
  • Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
  • Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland

References

  • Amesbury M. J., Swindles G. T., Bobrov A., Charman D. J., Holden J., Lamentowicz M., Mallon G., Mazei Y., Mitchell E. A. D., Payne R. J., Roland T. P., Turner T. E., Warner B. G. (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat. Sci. Rev. 152: 132–151
  • Anderson M. J. (2001) A new method for non-parametric multivariate analysis of variance: non-parametric manova for ecology. Austral. Ecol. 26: 32–46
  • Arrieira R. L., Schwind L. T. F., Bonecker C. C., Lansac-Toha F. A. (2015) Use of functional diversity to assess determinant assembly processes of testate amoebae community. Aquat. Ecol. 49: 561–571
  • de Bello F., Lavorel S., Díaz S., Harrington R., Cornelissen J. H., Bardgett R. D., Berg M. P., Cipriotti P., Feld C. K., Hering D., and others (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19: 2873–2893
  • Benton T. G., Solan M., Travis J. M. J., Sait S. M. (2007) Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22: 516–521
  • Bobrov A. A., Charman D. J., Warner B. G. (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150: 125–36
  • Bonn A., Allott T., Evans M., Joosten H., Stoneman R. (2016) Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press
  • Bonnett S. A., Linsted R., Ross S., Maltby E. (2011) Guidelines for monitoring the success of peatland restoration. Technical Report. Natural England, SWIMMER
  • Booth R. K. (2001) Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: Implications for paleoecology and environmental monitoring. Wetlands 21: 564–576
  • Booth R. K. (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J. Paleolimnol. 28: 329–348
  • Booth R. K., Lamentowicz M., Charman D. (2010) Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7: 1–7
  • Booth R. K., Meyers B. (2010) Environmental controls on pore number in Hyalosphenia papilio: implications for paleoenvironmental reconstruction. Acta Protozool. 49: 29–35
  • Buttler A., Warner B. G., Grosvernier P., Matthey Y. (1996) Vertical patterns of testate amoebae (protozoa: rhizopoda) and peat-forming vegetation on cutover bogs in the Jura, Switzerland. New Phytol. 134: 371–382
  • Cangelosi R., Goriely A. (2007) Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2: 2
  • Caron D. A., Worden A. Z., Countway P. D., Demir E., Heidelberg K. B. (2009) Protists are microbes too: a perspective. ISME J. 3: 4–12
  • Cavalier-Smith T., Chao E. E. Y. (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358
  • Cavender-Bares J., Kozak K. H., Fine P. V. A., Kembel S. W. (2009) The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693–715
  • Charman D. J. (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat. Sci. Rev. 20: 1753–1764
  • Charman D. J., Hendon D., Woodland W. A. (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. Quaternary Research Association.
  • Chase J. M., Kraft N. J., Smith K. G., Vellend M., Inouye B. D. (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2: 1–11
  • Church A., Fish R., Haines-Young R., Mourato S., Tratalos J., Stapleton L., Willis C., Coates P., Gibbons S., Leyshon C., Potschin M., Ravenscroft N., Sanchis-Guarner R., Winter M., Kenter J. (2014) UK National Ecosystem Assessment Follow-on. Work Package Report 5: Cultural ecosystem services and indicators. UNEP-WCMC, LWEC, UK
  • Delaine M., Bernard N., Gilbert D., Recourt P., du Châtelet E. A. (2017) Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifolium. Eur. J. Protistol. 59: 14–25
  • Dray S., Legendre P. (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412
  • Fournier B., Lara E., Jassey V. E. J., Mitchell E. A. D. (2015) Functional traits as a new approach for interpreting testate amoeba palaeo-records in peatlands and assessing the causes and consequences of past changes in species composition. The Holocene 25: 1375–1383
  • Fournier B., Malysheva E., Mazei Y., Moretti M., Mitchell E. A. D. (2012) Toward the use of testate amoeba functional traits as indicator of floodplain restoration success. Eur. J. Soil Biol. 49: 85–91
  • Gilbert D., Amblard C., Bourdier G., Francez A. J. (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb. Ecol. 35: 83–93
  • Gilbert D., Mitchell E. A. D. (2006) Microbial diversity in Sphagnum peatlands. Dev. Earth Surf. Process 9: 287–318
  • Gilbert D., Mitchell E. A. D., Amblard C., Bourdier G., Francez A. J. (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool. 42: 99–104
  • Gomaa F., Kosakyan A., Heger T. J., Corsaro D., Mitchell E. A. D., Lara E. (2014) One alga to rule them all: unrelated mixotrophic testate amoebae (Amoebozoa, Rhizaria and Stramenopiles) share the same symbiont (Trebouxiophyceae). Protist 165: 161–176
  • Gomaa F., Mitchell E. A. D., Lara E. (2013) Amphitremida (Poche, 1913) is a new major, ubiquitous Labyrinthulomycete clade. PLoS ONE 8: e53046
  • Gower J. C. (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857–871
  • Graf U., Kuchler M., Ecker K., Feldmeyer-Christe E., Könitzer C., Känzig U., Grosvernier P., Berchten F., Lugon A., David R., Marti F. (2007) Etat et évolution des marais en Suisse. Office Fédéral de l’Environnement, Berne
  • Grosvernier P., Matthey Y., Buttler A. (1997) Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J. Appl. Ecol. 34: 471–483
  • Heal O. W. (1964) Observations on the seasonal and spatial distribution of testacea (Protozoa: Rhizopoda) in Sphagnum. J. Anim. Ecol. 33: 395–412
  • Heger T. J., Mitchell E. A. D., Leander B. S. (2013) Holarctic phylogeography of the testate amoeba Hyalosphenia papilio (Amoebozoa: Arcellinida) reveals extensive genetic diversity explained more by environment than dispersal limitation. Mol. Ecol. 22: 5172–5184
  • Heger T. J., Mitchell E. A. D., Ledeganck P., Vincke S., Van de Vijver B., Beyens L. (2009) The curse of taxonomic uncertainty in biogeographical studies of free‐living terrestrial protists: a case study of testate amoebae from Amsterdam Island. J. Biogeogr. 36: 1551–1560
  • Holt R. D. (2009) Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 106: 19659–19665
  • Jassey V. E. J., Chiapusio G., Mitchell E. A. D., Binet P., Toussaint M.-L., Gilbert D. (2011) Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol. 61: 374–385
  • Jassey V. E. J., Meyer C., Dupuy C., Bernard N., Mitchell E. A. D., Toussaint M.-L., Metian M., Chatelain A. P., Gilbert D. (2013a) To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland? Microb. Ecol. 66: 571–580
  • Jassey V. E. J., Chiapusio G., Binet P., Buttler A., Laggoun-Defarge F., Delarue F., Bernard N., Mitchell E. A. D., Toussaint M. L., Francez A. J., Gilbert D. (2013b) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob. Change Biol. 19: 811–823
  • Jassey V. E. J., Signarbieux C., Hättenschwiler S., Bragazza L., Buttler A., Delarue F., Fournier B., Gilbert D., Laggoun-Défarge F., Lara E., Mills R. T. E., Mitchell E. A. D., Payne R. J., Robroek B. J. M. (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci. Rep. 5: 16931
  • Juggins, S. (2015) rioja: Analysis of Quaternary Science Data, R package
  • Kaiser H. F. (1991) Coefficient Alpha for a Principal Component and the Kaiser-Guttman Rule. Psychol. Rep. 68: 855–858
  • Kajukało K., Fiałkiewicz-Kozieł B., Gałka M., Kołaczek P., Lamentowicz M. (2016) Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data. Eur. J. Protistol. 55: 165–180
  • Kearney M., Simpson S. J., Raubenheimer D., Helmuth B. (2010) Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B. Biol. Sci. 365: 3469–3483
  • Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., Blomberg S. P., Webb C. O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464
  • Koenig I., Mulot M., Mitchell E. A. D. (2018) Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table. Ecol. Indic.
  • Kosakyan A., Gomaa F., Mitchell E. A. D., Heger T. J., Lara E. (2013) Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae). Eur. J. Protistol. 49: 222–37
  • Kosakyan A., Lahr D. J. G., Mulot M., Meisterfeld R., Mitchell E. A. D., Lara E. (2016) Phylogenetic reconstruction based on COI reshuffles the taxonomy of Hyalosphenid shelled (testate) amoebae and reveals the convoluted evolution of shell plate shapes. Cladistics. 32 (6): 606–623
  • Laggoun-Defarge F., Mitchell E. A. D., Gilbert D., Disnar J.-R., Comont L., Warner B. G., Buttler A. (2008) Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). J. Appl. Ecol. 45: 716–727
  • Lahr D. J. G., Bosak T., Lara E., Mitchell E. A. D. (2015) The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems. PeerJ. 3: e1234
  • Laliberté E., Legendre P., Shipley, B. (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package
  • Lamentowicz L., Gabka M., Rusinska A., Sobczynski T., Owsianny P. M., Lamentowicz M. (2011) Testate amoeba (Arcellinida, Euglyphida) ecology along a poor-rich gradient in fens of Western Poland. Int. Rev. Hydrobiol. 96: 356–380
  • Lamentowicz M., Gałka M., Lamentowicz Ł., Obremska M., Kühl N., Lücke A., Jassey V. E. J. (2015) Reconstructing climate change and ombrotrophic bog development during the last 4000 years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418: 261–277
  • Lamentowicz Ł., Lamentowicz M., Gabka M. (2008) Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28: 164–175
  • Lamentowicz M., Mitchell E. A. D. (2005) The ecology of testate amoebae (protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol. 50: 48–63
  • Lara E., Heger T. J., Mitchell E. A. D., Meisterfeld R., Ekelund F. (2007) SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria : Euglyphida). Protist 158: 229–237
  • Lavorel S., Garnier E. (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16: 545–556
  • Legendre P., Gallagher E. D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280
  • Lizoňová Z., Horsák M. (2017) Contrasting diversity of testate amoebae communities in Sphagnum and brown-moss dominated patches in relation to shell counts. Eur. J. Protistol. 58: 135–142
  • MacArthur R. H. (1957) On the relative abundance of bird species. Proc. Natl. Acad. Sci. 43: 293–295
  • Makarieva A. M., Gorshkov V. G., Li B.-L., Chown S. L., Reich P. B., Gavrilov V. M. (2008) Mean mass-specific metabolic rates are strikingly similar across life’s major domains: evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. 105: 16994–16999
  • Marcisz K., Colombaroli D., Jassey V. E. J., Tinner W., Kołaczek P., Gałka M., Karpińska-Kołaczek M., Słowiński M., Lamentowicz M. (2016) A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Sci. Rep. 6
  • Marcisz K., Lamentowicz Ł., Słowińska S., Słowiński M., Muszak W., Lamentowicz M. (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J. Protistol. 50: 445–455
  • Mason N. W., Lanoiselée C., Mouillot D., Wilson J. B., Argillier C. (2008) Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. J. Anim. Ecol. 77: 661–669
  • Mazei Y. A., Tsyganov A. N., Bubnova O. A. (2009) The species composition and community structure of testate amoebae in Sphagnum bogs of northern Karelia (The White Sea Lowland). Zool. Zhurnal. 88: 771–782
  • Messier J., McGill B. J., Lechowicz M. J. (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13: 838–848
  • Millenium Ecosystem Assessment, MEA (2005) Ecosystems and human well-being. The Island Press, Washington D.C.
  • Mitchell E. A. D. (2003) The identification of Nebela and similar species with indications on their ecology and distribution. Univ. Anchorage Alsk
  • Mitchell E. A. D., Buttler A. J., Warner B. G., Gobat J.-M. (1999) Ecology of testate amoebae (Protozoa : Rhizopoda) in Sphagnum peatlands in the Jura Mountains, Switzerland and France. Ecoscience 6: 565–576
  • Mitchell E. A. D., Charman D. J. G., Warner B. G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers. Conserv. 17: 2115–2137
  • Mitchell E. A. D., Lamentowicz M., Payne R. J., Mazei Y. (2014) Effect of taxonomic resolution on ecological and palaeoecological inference – a test using testate amoeba water table depth transfer functions. Quat. Sci. Rev. 91: 62–69
  • Mlambo M. C. (2014) Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers. Conserv. 23: 781–790
  • Mouillot D., Dumay O., Tomasini J. A. (2007) Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf. Sci. 71: 443–456
  • Mulot M., Marcisz K., Grandgirard L., Lara E., Kosakyan A., Robroek B. J., Lamentowicz M., Payne R. J., Mitchell E. A. D. (2017) Genetic determinism vs. phenotypic plasticity in protist morphology. J. Eukaryot. Microbiol.
  • Mulot M., Varidel, D., Mitchell, E. A. D. (2015) A mesocosm approach to study the response of Sphagnum peatlands to hydrological changes: setup, optimisation and performance. Mires Peat 16: 1–12
  • Niemi G. J., McDonald M. E. (2004) Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 35: 89–111
  • Norris K., Bailey M., Keith A., Maskell L., Reading C., Turner S., Vanbergen A., Watt A., and others (2011) Biodiversity in the context of ecosystem services. Chapter 4 in: Technical Report. UK National Ecosystem Assessment, 63–103
  • Ogden G. G., Hedley R. H. (1980) An atlas of freshwater testate amoebae. Soil Sci. 130: 176
  • Oksanen J. (2015) Vegan: an introduction to ordination. R package.
  • Oliverio A. M., Lahr D. J. G., Nguyen T., Katz L. A. (2014) Cryptic diversity within morphospecies of testate amoebae (Amoebozoa: Arcellinida) in New England bogs and fens. Protist 165: 196–207
  • Opravilova V., Hajek M. (2006) The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: A case study from the Western Carpathians. Acta Protozool. 45: 191–204
  • Payne R. J. (2013) Seven reasons why protists make useful bioindicators. Acta Protozool. 52: 105
  • Payne R. J., Charman D. J., Matthews S., Eastwood W. J. (2008) Testate amoebae as palaeohydrological proxies in Surmene Agacbasi Yaylasi peatland (Northeast Turkey). Wetlands 28: 311–323
  • Payne R. J., Creevy A., Malysheva E., Ratcliffe J., Andersen R., Tsyganov A. N., Rowson J. G., Marcisz K., Zielińska M., Lamentowicz M., Lapshina E. D., Mazei Y. (2016) Tree encroachment may lead to functionally-significant changes in peatland testate amoeba communities. Soil Biol. Biochem. 98: 18–21
  • Pinto R., de Jonge V. N., Marques J. C. (2014) Linking biodiversity indicators, ecosystem functioning, provision of services and human well-being in estuarine systems: Application of a conceptual framework. Ecol. Indic. 36: 644–655
  • Podani J. (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 331–340
  • Qin Y., Mitchell E. A. D., Lamentowicz M., Payne R. J., Lara E., Gu Y., Huang X., Wang H. (2013) Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. J. Paleolimnol. 50: 319–330
  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
  • Ricotta C., Moretti M. (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188
  • Schwind L. T. F., Arrieira R. L., Bonecker C. C., Lansa-Tôha F. A., Amodêo F. (2016) Chlorophyll-a and suspended inorganic material affecting the shell traits of testate amoebae community. Acta Protozool. 55 (3): 145–154
  • Singer D., Kosakyan A., Pillonel A., Mitchell E. A. D., Lara E. (2015) Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida, Hyalospheniidae), a new species described from a Swiss raised bog. Eur. J. Protistol. 51: 79–85
  • Tsyganov A. N., Aerts R., Nijs I., Cornelissen J. H. C., Beyens L. (2012) Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: The results of eight-year field climate manipulations. Protist 163: 400–414
  • Turner T. E., Swindles G. T., Charman D. J., Blundell A. (2013) Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369: 395–408
  • Villéger S., Mason N. W., Mouillot D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301
  • Violle C., Navas M.-L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. (2007) Let the concept of trait be functional! Oikos 116: 882–892
  • Webb C. O., Losos J. B., Agrawal A. A. (2006) Integrating phylogenies into community ecology. Ecology 87: S1–S2
  • Wilkinson D. M., Mitchell E. A. D. (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol. J. 27: 520–533

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
52397249

YADDA identifier

bwmeta1.element.ojs-doi-10_4467_16890027AP_17_017_7498
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.