Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 7 | 1 | 22-32

Article title

Subtrochanteric fracture location effect on surgical management using intermedullary nail (IMN) versus extramedullary plate (EMP): a finite element method analysis

Authors

Content

Title variants

Languages of publication

Abstracts

EN
Background
Finite Element Method (FEM) analysis of the subtrochanteric fracture (STF) location effect in the subtrochanteric region (STR) fixated with the Intermedullary Nail (IMN) versus Extramedullary Plate (EMP) implant.
Material and methods
A femur computed tomography (CT) scan was used to create a femur FE-model with a straight-line fracture located at the STR. During the analysis, the fracture was stepwise lowered from 0.5 to 4.5 cm below the lesser trochanter (LT) with a total of 9 steps of 0.5 cm. The IMN (using Proximal Femoral Nail Antirotation) and EMP (using Dynamic Hip Screw) implants were modelled and implemented for fracture management.
Results
EMP illustrated lower Von-Mises stress for the proximal fractures (until 3.5 cm below LT); whereas IMN showed lower stress for distal fractures (from 4 cm below LT). The mean Von-Mises stress ratio for IMN versus EMP also decreased from proximal (1.93) to distal (0.47) of STR, with an intersection cross-point at 3.8 cm below LT.
Conclusions
The simulation shows that for the straight-line STF, EMP seems more favourable for proximal and IMN is more likely favourable for distal fractures. However, more FEM studies need to be conducted (e.g., with different fractures or implant types) on this topic.

Year

Volume

7

Issue

1

Pages

22-32

Physical description

Dates

published
2024

Contributors

author
  • Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Netherlands

References

  • Garrison I, Domingue G, Honeycutt MW. Subtrochanteric femur fractures: current review of management. EFORT Open Rev [Internet]. 2021;6(2):145-51. Available from: https://doi.org/10.1302/2058-5241.6.200048.
  • Jackson C, Tanios M, Ebraheim N. Management of Subtrochanteric Proximal Femur Fractures: A Review of Recent Literature. Adv Orthop [Internet]. 2018;2018:1-7. Available from: https://doi.org/10.1155/2018/1326701.
  • Ekström W, Németh G, Samnegård E, Dalen N, Tidermark J. Quality of life after a subtrochanteric fracture. Injury [Internet]. 2009;40(4):371-6. Available from: https://doi.org/10.1016/j.injury.2008.09.010.
  • Dhanwal DK, Dennison EM, Harvey NC, Cooper C. Epidemiology of hip fracture: Worldwide geographic variation. Indian J Orthop [Internet]. 2011;45(1):15-22. Available from: https://link.springer.com/10.4103/0019-5413.73656.
  • Kanis JA, Odén A, McCloskey E V., Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int [Internet]. 2012;23(9):2239-56. Available from: https://link.springer.com/10.1007/s00198-012-1964-3.
  • Zeelenberg ML, Van Lieshout EMM, Polinder S, Panneman MJM, Verhofstad MHJ, Den Hartog D. Trends in incidence, health care use and costs for subtrochanteric femur fractures in the Netherlands 2000–2019. Injury [Internet]. 2024;55(4):111461. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020138324001487.
  • Giannoudis P V., Ahmad MA, Mineo G V., Tosounidis TI, Calori GM, Kanakaris NK. Subtrochanteric fracture non-unions with implant failure managed with the “Diamond” concept. Injury [Internet]. 2013;44:S76-81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020138313700172.
  • Bedi A, Toan Le T. Subtrochanteric femur fractures. Orthop Clin North Am [Internet]. 2004;35(4):473-83. Available from: https://doi.org/10.1016/j.ocl.2004.05.006.
  • Koval KJ, Rezaie N, Yoon RS. Subtrochanteric Femur Fractures. In: Proximal Femur Fractures [Internet]. Cham: Springer International Publishing; 2018. p. 101-12. Available from: http://link.springer.com/10.1007/978-3-319-64904-7_9.
  • Reiter MJ, Bui-Mansfield LT, O’Brien SD, Tubb CC. Subtrochanteric Femur Fractures. J Comput Assist Tomogr [Internet]. 2015;39(1):47-56. Available from: http://journals.lww.com/00004728-201501000-00009.
  • Ng AC, Drake MT, Clarke BL, Sems SA, Atkinson EJ, Achenbach SJ, et al. Trends in subtrochanteric, diaphyseal, and distal femur fractures, 1984–2007. Osteoporos Int [Internet]. 2012;23(6):1721-6. Available from: http://link.springer.com/10.1007/s00198-011-1777-9.
  • Jackson C, Tanios M, Ebraheim N. Management of Subtrochanteric Proximal Femur Fractures: A Review of Recent Literature. Adv Orthop. 2018;2018:1-7.
  • Napoli N, Schwartz A V., Palermo L, Jin JJ, Wustrack R, Cauley JA, et al. Risk Factors for Subtrochanteric and Diaphyseal Fractures: The Study of Osteoporotic Fractures. J Clin Endocrinol Metab [Internet]. 2013;98(2):659-67. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2012-1896.
  • Koval KJ, Rezaie N, Yoon RS. Subtrochanteric Femur Fractures. In: Egol KA, Leucht P, editors. Proximal Femur Fractures [Internet]. Cham: Springer International Publishing; 2018. p. 101-12. Available from: https://doi.org/10.1007/978-3-319-64904-7_9.
  • Barbosa de Toledo Lourenço PR, Pires RES. Subtrochanteric fractures of the femur: update. Rev Bras Ortop (English Ed [Internet]. 2016;51(3):246-53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S225549711600046X.
  • Joglekar SB, Lindvall EM, Martirosian A. Contemporary Management of Subtrochanteric Fractures. Orthop Clin North Am [Internet]. 2015;46(1):21-35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0030589814001345.
  • Roberts CS, Nawab A, Wang M, Voor MJ, Seligson D. Second Generation Intramedullary Nailing of Subtrochanteric Femur Fractures: A Biomechanical Study of Fracture Site Motion. J Orthop Trauma [Internet]. 2002;16(4):231-8. Available from: http://journals.lww.com/00005131-200204000-00003.
  • Mittal R, Banerjee S. Proximal femoral fractures: Principles of management and review of literature. J Clin Orthop Trauma [Internet]. 2012;3(1):15-23. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0976566212000124.
  • Wiss DA, Brien WW. Subtrochanteric Fractures of the Femur Results of Treatment by Interlocking Nailing. Clin Orthop Relat Res. 1992;283:231-6.
  • Massoud EIE. Fixation of subtrochanteric fractures. Strateg Trauma Limb Reconstr [Internet]. 2009;4(2):65-71. Available from: https://www.stlrjournal.com/doi/10.1007/s11751-009-0058-z.
  • Papp S, Backman C, Konikoff L, Tanuseputro P, Harley A, Shah S, et al. Comparing Intramedullary Nails Versus Dynamic Hip Screws in the Treatment of Intertrochanteric Hip Fractures on Post-operative Rehabilitation Outcomes:A Systematic Review Protocol. Geriatr Orthop Surg Rehabil [Internet]. 2022;13:215145932211441. Available from: http://journals.sagepub.com/doi/10.1177/21514593221144180.
  • Geetala R, Wakefield E, Bradshaw F, Zhang J, Krkovic M. Comparison of intra-operative outcomes following internal fixation with trochanteric stabilisation plate or intramedullary nail in intertrochanteric fractures. Eur J Orthop Surg Traumatol [Internet]. 2023;34(2):1193-9. Available from: https://link.springer.com/10.1007/s00590-023-03779-5.
  • Mirbolook A, Siavashi B, Jafarinezhad AE, Khajeh Jahromi S, Farahmand M, Roohi Rad M, et al. Subtrochanteric Fractures: Comparison of Proximal Femur Locking Plate and Intramedullary Locking Nail Fixation Outcome. Indian J Surg [Internet]. 2015;77(S3):795-8. Available from: http://link.springer.com/10.1007/s12262-013-1004-3.
  • Yoon Y-C, Kim J-W, Kim T-K, Oh C-W, Park K-H, Lee J-H. Comparative biomechanical analysis of reconstruction and cephalomedullary nails in the treatment of osteoporotic subtrochanteric fractures. Injury [Internet]. 2024;55(6):111512. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020138324001992.
  • Sowmianarayanan S, Chandrasekaran A, Kumar RK. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants - a comparative study. Proc Inst Mech Eng Part H J Eng Med [Internet]. 2008;222(1):117-27. Available from: http://journals.sagepub.com/doi/10.1243/09544119JEIM156.
  • Wang L, Zhao F, Han J, Wang C, Fan Y. Biomechanical study on proximal femoral nail antirotation (PFNA) for intertrochanteric fracture. J Mech Med Biol [Internet]. 2012;12(04):1250075. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0219519412005125.
  • Wang J, Ma J-X, Lu B, Bai H-H, Wang Y, Ma X-L. Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthop Traumatol Surg Res [Internet]. 2020;106(1):95-101. Available from: https://doi.org/10.1016/j.otsr.2019.04.027.
  • Yu B. Proximal Femoral Nail vs. Dynamic Hip Screw in Treatment of Intertrochanteric Fractures: A Meta-Analysis. Med Sci Monit [Internet]. 2014;20:1628–33. Available from: http://www.medscimonit.com/abstract/index/idArt/890962.
  • Carey T, Key C, Oliver D, Biega T, Bojescul J. Prevalence of Radiographic Findings Consistent With Femoroacetabular Impingement in Military Personnel With Femoral Neck Stress Fractures. J Surg Orthop Adv [Internet]. 2013;22(01):54-8. Available from: http://www.datatrace.com/e-chemtracts/emailurl.html?http://www.newslettersonline.com/user/user.fas/s=563/fp=20/tp=37?T=open_article,50067469&P=article.
  • Kazemi SM, Qoreishy M, Keipourfard A, Sajjadi MM, Shokraneh S. Effects of Hip Geometry on Fracture Patterns of Proximal Femur. Arch bone Jt Surg [Internet]. 2016;4(3):248-52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27517071.
  • Konstantinidis L, Papaioannou C, Hirschmüller A, Pavlidis T, Schroeter S, Südkamp NP, et al. Intramedullary nailing of trochanteric fractures: central or caudal positioning of the load carrier? A biomechanical comparative study on cadaver bones. Injury [Internet]. 2013;44(6):784-90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020138313000053.
  • Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech [Internet]. 2000;33(10):1325-30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021929000000695.
  • Cristofolini L, Taddei F, Baleani M, Baruffaldi F, Stea S, Viceconti M. Multiscale investigation of the functional properties of the human femur. Philos Trans R Soc A Math Phys Eng Sci [Internet]. 2008 Sep 28;366(1879):3319-41. Available from: https://royalsocietypublishing.org/doi/10.1098/rsta.2008.0077.
  • Implant Materials . Wrought 18 % Chromium – [Internet]. 3rd ed. Synthes; 2009. Available from: https://silo.tips/download/third-edition-implant-materials-wrought-18-chromium-14-nickel-25-molybdenum-stai#.
  • Yu M, Li J, Ma G, editors. Yield Condition BT. In: Structural Plasticity: Limit, Shakedown and Dynamic Plastic Analyses of Structures [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 32-63. Available from: https://doi.org/10.1007/978-3-540-88152-0_3.
  • Bai Q, Bai Y. Thermal Expansion Design. In: Subsea Pipeline Design, Analysis, and Installation [Internet]. Elsevier; 2014. p. 187-220. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123868886000092.
  • Burnei C, Popescu G, Barbu D, Capraru F. Intramedullary osteosynthesis versus plate osteosynthesis in subtrochanteric fractures. J Med Life [Internet]. 2011;4(4):324-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22514563.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
33898188

YADDA identifier

bwmeta1.element.ojs-doi-10_31373_ejtcm_187180
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.