Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2024 | 11 | 1 | 36-45

Article title

The influence of high additions in multifocal contact lenses for myopia control on binocular vision

Content

Title variants

Languages of publication

Abstracts

EN
Methods: A prospective randomized, double-blind study including 24 subjects aged between 18 and 36 years. Subjects were divided into two groups. The first group wore multifocal soft contact lenses (MFSCLs) with a 3.0 mm central zone diameter, while the second group wore contact lenses with 4.5 mm central zones. Each subject was fitted with two MFSCLs: one with +2.00 D and the other with +4.00 D peripheral addition power and, additionally, with plano single vision contact lenses (SVCLs). Phoria at a distance and near, distance and near vergence ranges, vergence facility at near, stereopsis at near, and fixation disparity at near were measured in each study lens type.
Results: No significant influence of addition on distance phoria was found in either group (p = 0.446 and p = 0.317, for 3 mm and 4.5 mm central zone diameter, respectively). Additionally, no significant difference was observed for any MFSCLs and SVCLs in near phoria (p = 0.320), near vergence facility (p = 0.197), or near fixation disparity (p = 0.203). A decline in fusional vergence ranges at a distance in the base-out direction was noted in subjects wearing +4.00 D addition compared to +2.00 D addition (p = 0.002) and plano lenses (p = 0.014). Both additions reduced fusional vergence ranges at near the base out (p = 0.020) and shifted vergence ranges more in the exophoria base in directions (p = 0.014).
Conclusions: The study showed that MFSCLs with high additional power in the periphery have only a marginal impact on the binocular functions.

Publisher

Journal

Year

Volume

11

Issue

1

Pages

36-45

Physical description

Dates

published
2024

Contributors

  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University in Poznan
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University in Poznan
  • Department of Ophthalmology, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences
author
  • Department of Health Sciences, Calisia University
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University in Poznan

References

  • Melmoth DR, Grant S. Advantages of binocular vision for the control of reaching and grasping. Exp Brain Res. 2006; 171(3): 371-88.
  • Jainta S, Blythe HI, Simon P. Liversedge, Binocular Advantages in Reading. Curr Biol. 2014; 24(5): 526-30.
  • Cooper JS, BC, Cotter SA et al. Care of the Patient with Accommodative and Vergence Dysfunction. St. Louis: American Optometric Association, 2006.
  • Resnikoff S, Jonas BJ, Friedman D et al. Myopia – A 21st Century Public Health Issue. Invest Ophthalmol Vis Sci. 2019. 60(3): p. Mi-Mii.
  • Zhu Z, Chen Y, Tan Z et al. Interventions recommended for myopia prevention and control among children and adolescents in China: a systematic review. Br J Ophthalmol. 2023; 107(2): 160-6.
  • Wu PC, Huang HM, Yu HJ et al. Epidemiology of Myopia. Asia Pac J Ophthalmol (Phila). 2016; 5(6): 386-93.
  • Wolffsohn JS Calossi A, Cho P et al. Global trends in myopia management attitudes and strategies in clinical practice. Cont Lens Anterior Eye. 2016; 39(2): 106-16.
  • Efron N, Morgan PB, Woods CA et al. International survey of contact lens fitting for myopia control in children. Cont Lens Anterior Eye. 2019; 43(2): 4-8.
  • Lawrenson JG, Shah R, Huntjens B et al. Interventions for myopia control in children: a living systematic review and network meta-analysis. Cochrane Database Syst Rev. 2023; 2(2): Cd014758.
  • Gifford P, Gifford KL. The Future of Myopia Control Contact Lenses. Optom Vis Sci. 2016; 93(4): 336-43.
  • Walline JJ. Myopia Control: A Review. Eye Contact Lens. 2016; 42(1): 3-8.
  • Wildsoet CF, Chia A, Cho P et al. IMI – Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Invest Ophthalmol Vis Sci. 2019; 60(3): M106-M131.
  • Németh J, Tapasztó B, Aclimandos WA et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol. 2021; 31(3): 853-83. http://doi.org/1120672121998960.
  • Sankaridurg P, Bakaraju RC, Naduvilath T et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol Opt. 2019; 39(4): 294-307.
  • Walline JJ, Walker MK, Mutti DO et al. Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial. JAMA. 2020; 324(6): 571-80.
  • Li Q, Fang F. Advances and challenges of soft contact lens design for myopia control. Appl Opt. 2019; 58(7): 1639-56.
  • Jonas JB, Ang M, Cho P et al. IMI Prevention of Myopia and Its Progression. Invest Ophthalmol Vis Sci. 2021; 62(5): 6.
  • Brennan NA, Toubouti YM, Cheng X et al. Efficacy in myopia control. Prog Retin Eye Res. 2021; 83: 100923.
  • Przekoracka K, Michalak KP, Olszewski J et al. Contrast sensitivity and visual acuity in subjects wearing multifocal contact lenses with high additions designed for myopia progression control. Cont Lens Anterior Eye. 2020; 43(1): 33-9.
  • Przekoracka K, Michalak KP, Olszewski J et al. Computerised dynamic posturography for postural control assessment in subjects wearing multifocal contact lenses dedicated for myopia control. Ophthalmic Physiol Opt. 2021; 41(3): 486-95.
  • Robboy MW, Hilmantel G, Tarver ME et al. Assessment of Clinical Trials for Devices Intended to Control Myopia Progression in Children. Eye Contact Lens. 2018; 44(4): 212-9.
  • Remón L, Pérez-Merino P, Macedo-de-Araújo RJ et al. Bifocal and Multifocal Contact Lenses for Presbyopia and Myopia Control. J Ophthalmol. 2020; 2020: 8067657.
  • Kropacz-Sobkowiak S, Przekoracka-Krawczyk A, Michalak KP et al. The influence of high addition soft multifocal contact lenses on visual performance. Klinika Oczna. 2020; 122(3): 92-9.
  • Benjamin W. Borish’s Clinical Refraction, ed. Butterworth-Heinemann. Vol. Second edition. 2006.
  • Nawrot P, Michalak KP, Przekoracka-Krawczyk A. Does home-based vision therapy affect symptoms in young adults with convergence insufficiency? Optica Applicata. 2013; 43(3): 551-66.
  • Przekoracka-Krawczyk A, Wojtczak-Kwaśniewska M. The Efficiency of Optometric Vision Therapy in Accommodative Esotropia With High AC/A Ratio. OphthaTherapy. 2018; 5(3): 201-5.
  • Gong CR, Troilo D, Richdale K. Accommodation and Phoria in Children Wearing Multifocal Contact Lenses. Optom Vis Sci. 2017; 94(3): 353-60.
  • Przekoracka K, Michalak K, Michalski A et al. The influence of soft multifocal contact lenses with high additions on the eye–hand coordination. OphthaTherapy. 2019; 6(4): 252-8.
  • Chen ST, Tung HC, Chen YT et al. The influence of contact lenses with different optical designs on the binocular vision and visual behavior of young adults. Sci Rep. 2022; 12(1): 6573.
  • Gantz LL, Koslowe K, Shneor E et al. Sensitivity of the Traditional vs. Paul Harris Randot Stereotests in Detecting Aniseikonic Stereoanomalies, in International Congress of Behavioural Optometry. 2014, Department of Optometry and Vision Science, Hadassah Academic College.
  • Smith EL 3rd, Campbell MC, Irving E. Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses? Ophthalmic Physiol Opt. 2013; 33(3): 379-84.
  • Sha J, Tilia D, Diec J et al. Visual performance of myopia control soft contact lenses in non-presbyopic myopes. Clin Optom (Auckl). 2018; 10: 75-86.
  • Ruiz-Pomeda A, Perez-Sanchez B, Canadas P et al. Binocular and accommodative function in the controlled randomized clinical trial MiSight(R) Assessment Study Spain (MASS). Graefes Arch Clin Exp Ophthalmol. 2019; 257(1): 207-15.
  • Kang P, Wildsoet CF. Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults. Cont Lens Anterior Eye. 2016; 39(2): 133-40.
  • Sreenivasan V, Irving EL, Bobier WR. Effect of heterophoria type and myopia on accommodative and vergence responses during sustained near activity in children. Vision Res. 2012; 57: 9-17.
  • Ferrer-Blasco T, Madrid-Costa D. Stereoacuity with balanced presbyopic contact lenses. Clin Exp Optom. 2011; 94(1): 76-81.
  • Sha J, Bakaraju RC, Tilia D et al. Short-term visual performance of soft multifocal contact lenses for presbyopia. Arq Bras Oftalmol. 2016; 79(2): 73-7.
  • Goss DA, Wolter KL. Nearpoint phoria changes associated with the cessation of childhood myopia progression. J Am Optom Assoc. 1999; 70(12): 764-8.
  • Sreenivasan V, Irving EL, Bobier WR. Can current models of accommodation and vergence predict accommodative behavior in myopic children? Vision Res. 2014; 101: 51-61.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
56308707

YADDA identifier

bwmeta1.element.ojs-doi-10_24292_01_OT_300324_6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.