PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 19 | 7-18
Article title

GEBCO and ETOPO1 gridded datasets for GMT based cartographic Mapping of Hikurangi, Puysegur and Hjort Trenches, New Zealand

Content
Title variants
Rastrowe zestawy danych GEBCO i ETOPO1 dla kartowania opartego na GMT Kartowanie rowów Hikurangi, Puysegur i Hjort, Nowa Zelandia
Languages of publication
EN
Abstracts
EN
The study focused on the comparative analysis of the submarine geomorphology of three oceanic trenches: Hikurangi Trench (HkT), Puysegur Trench (PT) and Hjort Trench (HjT), New Zealand region, Pacific Ocean. HjT is characterized by an oblique subduction zone. Unique regional tectonic setting consist in two subduction zones: northern (Hikurangi margin) and southern (Puysegur margin), connected by oblique continental collision along the Alpine Fault, South Island. This cause variations in the geomorphic structure of the trenches. PT/HjT subduction is highly oblique (dextral) and directed southwards. Hikurangi subduction is directed northwestwards. South Island is caught in between by the “subduction scissor”. Methodology is based on GMT (The Generic Mapping Tools) for mapping, plotting and modelling. Mapping includes visualized geophysical, tectonic and geological settings of the trenches, based on sequential use of GMT modules. Data include GEBCO, ETOPO1, EGM96. Comparative histogram equalization of topographic grids (equalized, normalized, quadratic) was done by module ’grdhisteq’, automated cross-sectioning – by ’grdtrack’. Results shown that HjT has a symmetric shape form with comparative gradients on both western and eastern slopes. HkT has a trough-like flat wide bottom, steeper gradient slope on the North Island flank. PT has an asymmetric V-form with steep gradient on the eastern slopes and gentler western slope corresponding to the relatively gentle slope of a subducting plate and steeper slope of an upper one. HkT has shallower depths < 2,500 m, PT is <-6,000 m. The deepest values > 6,000 m for HjT. The surrounding relief of the HjT presents the most uneven terrain with gentle slope oceanward, and a steep slope on the eastern flank for PT, surrounded by complex submarine relief along the Macquarie Arc. Data distribution for the HkT demonstrates almost equal pattern for the depths from -600 m to ₋2,600 m. PT has a bimodal data distribution with 2 peaks: 1) -4,250 to -4,500 m (18%); 2) -2,250 to -3,000 m, < 7,5%. The second peak corresponds to the Macquarie Arc. Data distribution for HjT is classic bell-shaped with a clear peak at -3,250 to -3,500 m. The asymmetry of the trenches resulted in geomorphic shape of HkT, PT and HjT affected by geologic processes.
PL
Studium poświęcone jest analizie porównawczej rzeźby dna trzech rowów oceanicznych: Hikurangi (HkT), Puysegur (PT) i Hjort (HjT), położonych w pobliżu Nowej Zelandii na południowym Pacyfiku. HjT charakteryzuje się skośną strefą subdukcji. Unikalna sytuacja geotektoniczna regionu polega na rozdzieleniu dwóch stref subdukcji: północnej (Hikurangi) i południowej (Puysegur), strefą kolizji kontynentalnej wzdłuż uskoku Alpine Fault na Wyspie Południowej. Subdukcja na południe od Wyspy Południowej zachodzi pod dużym kątem w kierunku południowo-wschodnim (PT i HjT), podczas gdy w strefie północnej (Hikurangi) odbywa się na północny zachód. W konsekwencji Wyspa Południowa jest ujęta w swego rodzaju „nożyce subdukcyjne”. Metodologia oparta na GMT (The Generic Mapping Tools) posłużyła do skartowania, wykreślenia i modelowania obszaru. Kartowanie obejmuje wizualizację danych geofizycznych oraz pozycji tektonicznej i geologicznej rowów, opartą na sekwencyjnym użyciu modułów GMT. Dane obejmują GEBCO, ETOPO1, EGM96. Porównawcza korekcja histogramu siatek topograficznych (wyrównana, znormalizowana, kwadratowa) została wykonana przez moduł „grdhisteq”, zaś zautomatyzowane przekroje – przez moduł „grdtrack”. Analiza wykazała , że rów Hjort ma symetryczną formę z porównywalnymi nachyleniami zarówno na zachodnich, jak i wschodnich zboczach. Rów Hikurangi ma podobne do koryta płaskie szerokie dno, a stok od strony zachodniej (przylegający do Wyspy Północnej) jest nachylony pod większym kątem od stoku wschodniego. Rów Puysegur ma asymetryczną V-kształtną formę ze stromo nachylonym zboczem wschodnim i łagodniejszym zachodnim. Rów HkT jest relatywnie płytki < 2500 m, PT osiąga głębokość <-6000 m. Największą głębokość (> 6000 m) stwierdzono dla rowu Hjort. Rzeźba dna w otoczeniu HjT jest najbardziej zróżnicowana, a w przypadku położonego bardziej na północ PT zaznacza się wyraźna dysproporcja pomiędzy łagodnym oceanicznym zboczem na zachodzie i stromym zboczem grzbietu Puysegur (północny odcinek Łuku Macquarie) na wschodniej flance rowu. Rozkład danych batymetrycznych dla HkT jest stosunkowo zrównoważony dla głębokości od 600 m do 2600 m. PT ma bimodalny rozkład danych z 2 pikami: 1) 4250 do 4500 m (18%); 2) 2250 do 3000 m, < 7,5%. Druga koncentracja danych odpowiada łukowi Macquarie. Rozkład danych dla HjT ma klasyczny kształt dzwonu z wyraźnym ekstremum odpowiadającym głębokościom 3250 do 3500 m. Asymetria zaprezentowanych rowów oceanicznych jest uwarunkowana przez procesy geotektoniczne.
Year
Issue
19
Pages
7-18
Physical description
Dates
published
2020-12-30
Contributors
References
  • Akan, Ç., McWilliams, J.C., Uchiyama, Y., 2020. Topographic and coastline influences on surf Eddies. Ocean Modelling 147, 101565. http://dx.doi.org/10.1016/j.ocemod.2019.101565
  • Amante, C., Eakins, B.W., 2009. Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum. http://dx.doi.org/10.7289/V5C8276M
  • Ballance, P.F., 1976. Evolution of the upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth and Planetary Science Letters 28, 356–370. http://dx.doi.org/10.1016/0012-821X(76)90197-7
  • Barker, D.H.N., Sutherland, R., Henrys, S., Bannister, S., 2009. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochemistry Geophysics Geosystems 10, 1–23. (Q02007). http://dx.doi.org/10.1029/2008GC002153
  • Barnes, P.M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I., Netzeband, G.L., Crutchley, G., 2010. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geology 272, 26–48.
  • Barnes, P.M., Mercier de Lepinay, B., 1997. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. Journal of Geophysical Research 102, 24931–24952. http://dx.doi.org/10.1029/97JB01384
  • Beavan, J., Haines, J., 2001. Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. Journal of Geophysical Research: Solid Earth 106, 741–770. http://dx.doi.org/10.1029/2000JB900302
  • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., Weatherall, P., 2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy 32 (4), 355–371.
  • Berryman, K., Ota, Y., Miyauchi, T., Hull, A., Clark, K., Ishibashi, K., Litchfield, N., 2011. Holocene paleoseismic history of upper-plate faults in the Southern Hikurangi subduction margin, New Zealand, deduced from marine terrace records. Bulletin of the Seismological Society of America 101, 2064–2087.
  • Berryman, K.R., 1993. Distribution, age, and deformation of Late Pleistocene marine terraces at Mahia peninsula, Hikurangi subduction margin, New Zealand. Tectonics 12, 1365–1379. http://dx.doi.org/10.1029/93TC01543
  • Brothers, D.S., Miller, N.C., Barrie, J.V., Haeussler, P.J., Greene, H.G., Andrews, B.D., Zielke, O., Watt, J., Dartnell, P., 2020. Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth and Planetary Science Letters 530, 115882. http://dx.doi.org/10.1016/j.epsl.2019.115882
  • Bursztyn, N., Pederson, J.L., Tressler, C., Mackley, R.D., Mitchell, K.J., 2015. Rock strength along a fluvial transect of the Colorado Plateau – quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters 429, 90–100. http://dx.doi.org/10.1016/j.epsl.2015.07.042
  • Cazenave, A., Ruff, L., 1985. Seasat geoid anomalies and the macquarie ridge complex. Food and agriculture organization of the united nations.
  • Clark, K., Howarth, J., Litchfield, N., Cochran, U., Turnbull, J., Dowling, L., Wolf, F., 2019. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geology 412, 139–172.
  • Dahlin, T., Svensson, M., Lindh, P., 1999. DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. Procs. EEGS’99, Budapest, Hungary, 6–9 September 1999, Ls5, 1–3. http://dx.doi.org/10.3997/2214-4609.201406466
  • Gales, J.A., Larter, R.D., Mitchell, N.C., Dowdeswell, J.A., 2013. Geomorphic signature of Antarctic submarine gullies: Implications for continental slope processes. Marine Geology 337, 112–124. http://dx.doi.org/10.1016/j.margeo.2013.02.003
  • Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
  • GEBCO Compilation Group 2020. GEBCO 2020 Grid. http://dx.doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
  • Greinert, J., Lewis, K.B., Bialas, J., Pecher, I.A., Rowden, A., Bowden, D.A., Linke, P., 2010. Methane seepage along the Hikurangi Margin, New Zealand: Overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Marine Geology 272, 6–25.
  • Harris, P.T., Barrie, J.V., Conway, K.W., Greene, H.G., 2014. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins. Deep Sea Research Part II: Topical Studies in Oceanography 104, 83–92. http://dx.doi.org/10.1016/j.dsr2.2013.06.017
  • Hodgson, D.A., Graham, A.G.C., Griffiths, H.J., Roberts, S.J., Cofaigh, C.Ó., Bentley, M.J., Evans, D.J.A., 2014. Glacial history of sub-Antarctic South Georgia based on the submarine geomorphology of its fjords. Quaternary Science Reviews 89, 129–147. http://dx.doi.org/10.1016/j.quascirev.2013.12.005
  • Jiao, R., Seward, D., Little, T.A., Kohn, B.P., 2015. Unroofing of fore-arc ranges along the Hikurangi Margin, New Zealand: Constraints from low-temperature thermochronology. Tectonophysics 656, 39–51.
  • Klaucke, I., Weinrebe, W., Petersen, C.J., Bowden, D., 2010. Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Marine Geology 272, 49–58. http://dx.doi.org/10.1016/j.margeo.2009.02.009
  • Klaučo, M., Gregorova, B., Stankov, U., Markovic, V., Lemenkova, P., 2013a. Determination of ecological significance based on geo-statistical assessment: A case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5, 28–42.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013b. Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. 54th International Conference Environmental & Climate Technologies, October 14, 2013. Riga, Latvia.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
  • Krabbenhoeft, A., Bialas, J., Klaucke, I., Crutchley, G., Papenberg, C., Netzeband, G.L., 2013. Patterns of subsurface fluid-flow at cold seeps: The Hikurangi Margin, offshore New Zealand. Marine and Petroleum Geology 39, 59–73.
  • Krabbenhoeft, A., Netzeband, G.L., Bialas, J., Papenberg, C., 2010. Episodic methane concentrations at seep sites on the upper slope Opouawe Bank, southern Hikurangi Margin, New Zealand. Marine Geology 272, 71–78. http://dx.doi.org/10.1016/j.margeo.2009.08.001
  • Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: Development of the opal belt and dynamics behavior of the West Antarctic ice sheet. Expeditionsprogramm Nr. 75 ANT XXIII/4.
  • Lamarche, G., Collot, J.-Y., Wood, R.A., Sosson, M., Sutherland, R., Delteil, J., 1997. The Oligocene-Miocene Pacific-Australian plate boundary, South of New Zealand: Evolution from oceanic spreading to strike-slip faulting. Earth and Planetary Science Letters 148, 129–139.
  • Lamarche, G., Lebrun, J.-F., 2000. Transition from strike-slip faulting to oblique subduction: Active tectonics at the Puysegur Margin, South New Zealand. Tectonophysics 316, 67–89.
  • Lemenkova, P., 2011. Seagrass mapping and monitoring along the coasts of Crete, Greece. M.Sc. Thesis, University of Twente.
  • Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria, [In:] Eberhardt, E. et al. (eds.), Protecting society through improved understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285.
  • Lemenkova, P., 2018a. Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences 4, 146–155.
  • Lemenkova, P., 2018b. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
  • Lemenkova, P., 2019a. GMT Based Comparative Analysis and Geo-morphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14, 39–48.
  • Lemenkova, P., 2019b. Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
  • Lemenkova, P., 2019c. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series 19 (2), 73–94.
  • Lemenkova, P., 2019d. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45, 57–84.
  • Lemenkova, P., 2019e. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering 34, 51–60. http://dx.doi.org/10.26650/ASE2019547010
  • Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
  • Lemenkova, P., 2019g. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
  • Lemenkova, P., 2019h. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
  • Lemenkova, P., 2020. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60. http://dx.doi.org/10.2478/bgeo-2020-0004
  • Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R., 1998. NASA/TP-1998-206861: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA.
  • Lindh, P., 2004. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. Lund University. PhD Thesis.
  • Lodolo, E., Coren, F., 1994. The Westernmost Pacific Antarctic plate boundary in the vicinity of the Macquarie triple junction. Terra Antarctica 1, 158–161.
  • Martin, R.A., Nesbitt, E.A., Campbell, K.A., 2010. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology 272, 270–284.
  • McCalpin, J.P., Gutierrez, F., Bruhn, R.L., Guerrero, J., Pavlis, T.L., Lucha, P., 2020. Tectonic geomorphology and late Quaternary deformation on the Ragged Mountain fault, Yakutat microplate, South Coastal Alaska. Geomorphology 351, 106875. http://dx.doi.org/10.1016/j.geomorph.2019.106875
  • Meckel, T.A., Coffin, M.F., Mosher, S., Symonds, P., Bernardel, G., Mann, P., 2003. Underthrusting at the Hjort Trench, Australian-Pacific plate boundary: Incipient subduction? Geochemistry, Geophysics, Geosystems 4, 1099. http://dx.doi.org/10.1029/2002GC000498
  • Melhuish, A., Sutherland, R., Davey, F.J., Lamarche, G., 1999. Crustal structure and neotectonics of the Puysegur oblique subduction zone, New Zealand. Tectonophysics 313, 335–362.
  • Neal, C.R., Mahoney, J.J., Kroenke, L.W., Duncan, R.A., Petterson, M.G., 1997. The Ontong Java Plateau. Geophysical Monograph Series 100, 183–216.
  • Nicol, A., Wallace, L.M., 2007. Temporal stability of deformation rates: Comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand. Earth and Planetary Science Letters 258, 397–413. http://dx.doi.org/10.1016/j.epsl.2007.03.039
  • Nitsche, F.O., Jacobs, S.S., Larter, R.D., Gohl, K., 2007. Bathymetry 393 of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology. Geochemistry, Geophysics, Geosystems, 395 8. http://dx.doi.org/10.1029/2007GC001694
  • Niyazi, Y., Eruteya, O.E., Omosanya, K.O., Harishidayat, D., Johansen, S.E., Waldmann, N., 2018. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Marine Geology 403, 123–138. http://dx.doi.org/10.1016/j.margeo.2018.05.007
  • O'Brien, P.E., Post, A.L., Edwards, S., Martin, T., Caburlotto, A., Donda, F., Leitchenkov, G., Romeo, R., Duffy, M., Evangelinos, D., Holder, L., Leventer, A., López-Quirós, A., Opdyke, B.N., Armand, L.K., 2020. Continental slope and rise geomorphology seaward of the Totten Glacier, T East Antarctica (112°E–122°E). Marine Geology 427, 106221.
  • Olson, C.J., Becker, J.J., Sandwell, D.T., 2014. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS, AGU Fall Meeting Abstracts 2014.
  • Pecher, I.P., Henrys, S.A., Wood, W.T., Kukowski, N., Crutchley, G.J., Fohrmann, M., Faure, K., 2010. Focussed fluid flow on the Hikurangi Margin, New Zealand – Evidence from possible local upwarping of the base of gas hydrate stability. Marine Geology 272, 99–113. http://dx.doi.org/10.1016/j.margeo.2009.10.006
  • Pysklywec, R.N., Ellis, S.M., Gorman, A.R., 2010. Three-dimensional mantle lithosphere deformation at collisional plate boundaries: A subduction scissor across the South Island of New Zealand. Earth and Planetary Science Letters 289, 334–346.
  • Reyes, A.G., Christenson, B.W., Faure, K., 2010. Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. Journal of Volcanology and Geothermal Research 192, 117–141. http://dx.doi.org/10.1016/j.jvolgeores.2010.02.015
  • Reyners, M., 2013. The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific. Earth and Planetary Science Letters 361, 460–468.
  • Reyners, M., Eberhart-Phillips, D., Bannister, S., 2011. Tracking repeated subduction of the Hikurangi Plateau beneath New Zealand. Earth and Planetary Science Letters 311, 165–171.
  • Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 6205, 65–67. http://dx.doi.org/10.1126/science.1258213
  • Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden--Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
  • Serra, C.S., Martínez-Loriente, S., Gràcia, E., Urgeles, R., Vizcaino, A., Perea, H., Bartolome, R., Pallàs, R., Lo Iacono, C., Diez, S., Dañobe-itia, J., Terrinha, P., Zitellini, N. 2020. Tectonic evolution, geomorpho-logy and influence of bottom currents along a large submarine canyon system: The São Vicente Canyon (SW Iberian margin). Marine Geology 426, 106219. http://dx.doi.org/10.1016/j.margeo.2020.106219
  • Suetova, I., Ushakova, L., Lemenkova, P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
  • Sutherland, R., Barnes, P., Uruski, C., 2006. Miocene-recent deformation, surface elevation, and volcanic intrusion of the overriding plate during subduction initiation, offshore southern Fiordland, Puysegur Margin, Southwest New Zealand. New Zealand Journal of Geology and Geophysics 49, 131–149.
  • Trevisan, A., Venema, V., Kollet, S., Rahman, M., 2020. The topographic control on land surface energy fluxes: A statistical approach to bias correction. Journal of Hydrology 584, 124669. http://dx.doi.org/10.1016/j.jhydrol.2020.124669
  • Wallace, L., Reyners, M., Cochran, U., Bannister, S., Barnes, P., Berryman, K., Power, W.L., 2009. Characterizing the seismogenic zone of a major plate boundary subduction thrust: The Hikurangi Margin. Geoche-mistry. Geophysics. Geosystems 10.
  • Wang, H., Crutchley, G.J., Stern, T., 2017. Gas hydrate formation in compressional, extensional and un-faulted structural settings – Examples from New Zealand’s Hikurangi margin. Marine and Petroleum Geology 88, 69–80.
  • Wells, D., Monahan, D., 2002. IHO S44 Standards for Hydrographic surveys and the variety of requirements for bathymetric data. The Hydrographic Journal, 104, 9–16
  • Wessel, P., Smith, W.H.F., 2018. The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. Computer software manual. U.S.A.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_18778_1427-9711_19_01
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.