Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 45 | 25-53

Article title

Relationship between Gut-Microbiota and Sport Activity

Content

Title variants

Languages of publication

Abstracts

EN
Aim: The purpose of this umbrella review is to bring together the most recent reviews concerning the relationship between gut-microbiota and sport activity. Materials and Methods: A literature search was conducted through PubMed and focused on reviews and systematic reviews published between 2015 and June 2021 that dealt with the topic of microbiota and physical activity. Only articles written in English and published in peer-reviewed journals were considered. Key words related to the term microbiota alone or in conjunction with other terms such as "supplements", "diet", "probiotics", "prebiotics", "health", "physical activity", and "pathogens" were analyzed. The selection process was done first by analyzing the titles, then the abstracts, and finally the full text. Results: After screening the title and abstract, 29 articles were excluded. Therefore, 20 studies were included in the present umbrella review. The figure shows the steps of the selection process (Figure 1). The specifications of the presented articles are listed in Table 2. Conclusions: Exercise appears to be an environmental factor that can determine changes in the gut microbial composition with possible benefits for the host. Increased microbiota diversity improves metabolic profile and immunological responses and may provide a possible biomarker for health improvement. Exercise altered microbiota could be used to look for new approaches in the treatment of metabolic and inflammatory diseases.

Contributors

  • Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy
  • Department of Aging, Orthopedic and Rheumatologic Sciences, A. Gemelli General Hospital Foundation - IRCCS, 00168 Rome, Italy
author
  • Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy
  • Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy
  • Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy
  • Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy/ Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy

References

  • Abboud, K. Y., Reis, S. K., Martelli, M. E., Zordão, O. P., Tannihão, F., de Souza, A. Z. Z., Assalin, H. B., Guadagnini, D., Rocha, G. Z., Saad, M. J. A., & Prada, P. O. (2019). Oral Glutamine Supplementation Reduces Obesity, Pro-Inflammatory Markers, and Improves Insulin Sensitivity in DIO Wistar Rats and Reduces Waist Circumference in Overweight and Obese Humans. Nutrients, 11(3), 536. https://doi.org/10.3390/nu11030536
  • Akira, S., & Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunology letters, 85(2), 85–95. https://doi.org/10.1016/s0165-2478(02)00228-6
  • Allen, J. M., Mailing, L. J., Cohrs, J., Salmonson, C., Fryer, J. D., Nehra, V., Hale, V. L., Kashyap, P., White, B. A., & Woods, J. A. (2018). Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut microbes, 9(2), 115–130. https://doi.org/10.1080/19490976.2017.1372077
  • Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T. V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., & Marette, A. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 64(6), 872–883. https://doi.org/10.1136/gutjnl-2014-307142
  • Appukutty, M., Ramasamy, K., Rajan, S., Vellasamy, S., Ramasamy, R., & Radhakrishnan, A. K. (2015). Effect of orally administered soy milk fermented with Lactobacillus plantarum LAB12 and physical exercise on murine immune responses. Beneficial microbes, 6(4), 491–496. https://doi.org/10.3920/BM2014.0129
  • Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science (New York, N.Y.), 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816
  • Balducci, S., Zanuso, S., Nicolucci, A., Fernando, F., Cavallo, S., Cardelli, P., Fallucca, S., Alessi, E., Letizia, C., Jimenez, A., Fallucca, F., & Pugliese, G. (2010). Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, metabolism, and cardiovascular diseases : NMCD, 20(8), 608–617. https://doi.org/10.1016/j.numecd.2009.04.015
  • Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627
  • Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. European journal of clinical nutrition, 61(3), 355–361. https://doi.org/10.1038/sj.ejcn.1602546
  • Brandt, N., Gunnarsson, T. P., Hostrup, M., Tybirk, J., Nybo, L., Pilegaard, H., & Bangsbo, J. (2016). Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle. Physiological reports, 4(14), e12844. https://doi.org/10.14814/phy2.12844
  • Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut microbes, 7(3), 216–234. https://doi.org/10.1080/19490976.2016.1158395
  • Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D., & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS one, 12(2), e0171352. https://doi.org/10.1371/journal.pone.0171352
  • Brinkmann, C., Chung, N., Schmidt, U., Kreutz, T., Lenzen, E., Schiffer, T., Geisler, S., Graf, C., Montiel-Garcia, G., Renner, R., Bloch, W., & Brixius, K. (2012). Training alters the skeletal muscle antioxidative capacity in non-insulin-dependent type 2 diabetic men. Scandinavian journal of medicine & science in sports, 22(4), 462–470. https://doi.org/10.1111/j.1600-0838.2010.01273.x
  • Burke, L. M., Ross, M. L., Garvican-Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., Mirtschin, J. G., Cato, L. E., Strobel, N., Sharma, A. P., & Hawley, J. A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. The Journal of physiology, 595(9), 2785–2807. https://doi.org/10.1113/JP273230
  • Campbell, S. C., Wisniewski, P. J., Noji, M., McGuinness, L. R., Häggblom, M. M., Lightfoot, S. A., Joseph, L. B., & Kerkhof, L. J. (2016). The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PloS one, 11(3), e0150502. https://doi.org/10.1371/journal.pone.0150502
  • Cani, P. D., Lecourt, E., Dewulf, E. M., Sohet, F. M., Pachikian, B. D., Naslain, D., De Backer, F., Neyrinck, A. M., & Delzenne, N. M. (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American journal of clinical nutrition, 90(5), 1236–1243. https://doi.org/10.3945/ajcn.2009.28095
  • Carbajo-Pescador, S., Porras, D., García-Mediavilla, M. V., Martínez-Flórez, S., Juarez-Fernández, M., Cuevas, M. J., Mauriz, J. L., González-Gallego, J., Nistal, E., & Sánchez-Campos, S. (2019). Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Disease models & mechanisms, 12(5), dmm039206. https://doi.org/10.1242/dmm.039206
  • Castell, L. M., Poortmans, J. R., Leclercq, R., Brasseur, M., Duchateau, J., & Newsholme, E. A. (1997). Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. European journal of applied physiology and occupational physiology, 75(1), 47–53. https://doi.org/10.1007/s004210050125
  • Cerdá, B., Pérez, M., Pérez-Santiago, J. D., Tornero-Aguilera, J. F., González-Soltero, R., & Larrosa, M. (2016). Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in physiology, 7, 51. https://doi.org/10.3389/fphys.2016.00051
  • Chassard, C., & Lacroix, C. (2013). Carbohydrates and the human gut microbiota. Current opinion in clinical nutrition and metabolic care, 16(4), 453–460. https://doi.org/10.1097/MCO.0b013e3283619e63
  • Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives, 121(6), 725–730. https://doi.org/10.1289/ehp.1306534
  • Churchward-Venne, T. A., Burd, N. A., Mitchell, C. J., West, D. W., Philp, A., Marcotte, G. R., Baker, S. K., Baar, K., & Phillips, S. M. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of physiology, 590(11), 2751–2765. https://doi.org/10.1113/jphysiol.2012.228833
  • Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O'Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541
  • Close, G. L., Hamilton, D. L., Philp, A., Burke, L. M., & Morton, J. P. (2016). New strategies in sport nutrition to increase exercise performance. Free radical biology & medicine, 98, 144–158. https://doi.org/10.1016/j.freeradbiomed.2016.01.016
  • Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract?. The Journal of physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270
  • Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17–44. https://doi.org/10.3390/nu7010017
  • Cook, M. D., Martin, S. A., Williams, C., Whitlock, K., Wallig, M. A., Pence, B. D., & Woods, J. A. (2013). Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain, behavior, and immunity, 33, 46–56. https://doi.org/10.1016/j.bbi.2013.05.005
  • Crawford, M., Whisner, C., Al-Nakkash, L., & Sweazea, K. L. (2019). Six-Week High-Fat Diet Alters the Gut Microbiome and Promotes Cecal Inflammation, Endotoxin Production, and Simple Steatosis without Obesity in Male Rats. Lipids, 54(2-3), 119–131. https://doi.org/10.1002/lipd.12131
  • Cronin, O., Barton, W., Skuse, P., Penney, N. C., Garcia-Perez, I., Murphy, E. F., Woods, T., Nugent, H., Fanning, A., Melgar, S., Falvey, E. C., Holmes, E., Cotter, P. D., O'Sullivan, O., Molloy, M. G., & Shanahan, F. (2018). A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems, 3(3), e00044-18. https://doi.org/10.1128/mSystems.00044-18
  • den Hartigh L. J. (2019). Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients, 11(2), 370. https://doi.org/10.3390/nu11020370
  • Derrien, M., Belzer, C., & de Vos, W. M. (2017). Akkermansia muciniphila and its role in regulating host functions. Microbial pathogenesis, 106, 171–181. https://doi.org/10.1016/j.micpath.2016.02.005
  • Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of psychiatric research, 43(2), 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009
  • Dhillon, J., Li, Z., & Ortiz, R. M. (2019). Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen. Current developments in nutrition, 3(8), nzz079. https://doi.org/10.1093/cdn/nzz079
  • Donati Zeppa, S., Agostini, D., Gervasi, M., Annibalini, G., Amatori, S., Ferrini, F., Sisti, D., Piccoli, G., Barbieri, E., Sestili, P., & Stocchi, V. (2019). Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 12(1), 17. https://doi.org/10.3390/nu12010017
  • Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., & Li, Y. P. (2011). Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25(1), 99–110. https://doi.org/10.1096/fj.10-164152
  • Elliott-Sale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B., & Ackerman, K. E. (2018). Endocrine Effects of Relative Energy Deficiency in Sport. International journal of sport nutrition and exercise metabolism, 28(4), 335–349. https://doi.org/10.1123/ijsnem.2018-0127
  • Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical pharmacology, 139, 82–93. https://doi.org/10.1016/j.bcp.2017.04.033
  • Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K. R., & Gibson, D. L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. https://doi.org/10.1186/s40168-016-0189-7
  • Etxeberria, U., Arias, N., Boqué, N., Macarulla, M. T., Portillo, M. P., Martínez, J. A., & Milagro, F. I. (2015). Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. The Journal of nutritional biochemistry, 26(6), 651–660. https://doi.org/10.1016/j.jnutbio.2015.01.002
  • Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., Antonopoulos, D. A., Smith, D., Chang, E. B., & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one, 9(3), e92193. https://doi.org/10.1371/journal.pone.0092193
  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071. https://doi.org/10.1073/pnas.1219451110
  • Fakharian, F., Asgari, B., Nabavi-Rad, A., Sadeghi, A., Soleimani, N., Yadegar, A., & Zali, M. R. (2022). The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Frontiers in cellular and infection microbiology, 12, 953718. https://doi.org/10.3389/fcimb.2022.953718
  • Fava, F., Lovegrove, J. A., Gitau, R., Jackson, K. G., & Tuohy, K. M. (2006). The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Current medicinal chemistry, 13(25), 3005–3021. https://doi.org/10.2174/092986706778521814
  • Fielding, R., Riede, L., Lugo, J. P., & Bellamine, A. (2018). l-Carnitine Supplementation in Recovery after Exercise. Nutrients, 10(3), 349. https://doi.org/10.3390/nu10030349
  • Fothergill, E., Guo, J., Howard, L., Kerns, J. C., Knuth, N. D., Brychta, R., Chen, K. Y., Skarulis, M. C., Walter, M., Walter, P. J., & Hall, K. D. (2016). Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity (Silver Spring, Md.), 24(8), 1612–1619. https://doi.org/10.1002/oby.21538
  • Francaux, M. (2009). Toll-like receptor signalling induced by endurance exercise. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 34(3), 454–458. https://doi.org/10.1139/H09-036
  • Frisard, M. I., McMillan, R. P., Marchand, J., Wahlberg, K. A., Wu, Y., Voelker, K. A., Heilbronn, L., Haynie, K., Muoio, B., Li, L., & Hulver, M. W. (2010). Toll-like receptor 4 modulates skeletal muscle substrate metabolism. American journal of physiology. Endocrinology and metabolism, 298(5), E988–E998. https://doi.org/10.1152/ajpendo.00307.2009
  • Frosali, S., Pagliari, D., Gambassi, G., Landolfi, R., Pandolfi, F., & Cianci, R. (2015). How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. Journal of immunology research, 2015, 489821. https://doi.org/10.1155/2015/489821
  • Gentile, C. L., & Weir, T. L. (2018). The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.), 362(6416), 776–780. https://doi.org/10.1126/science.aau5812
  • Ghonimy, A., Zhang, D. M., Farouk, M. H., & Wang, Q. (2018). The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. International journal of molecular sciences, 19(4), 1008. https://doi.org/10.3390/ijms19041008
  • Gleeson, M., Bishop, N. C., Oliveira, M., & Tauler, P. (2011). Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. International journal of sport nutrition and exercise metabolism, 21(1), 55–64. https://doi.org/10.1123/ijsnem.21.1.55
  • González-Sarrías A, Espín JC, Tomás-Barberán FA. (2017). Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Technol [Internet]. 2017(69),:281 http://dx.doi.org/10.1016/j.tifs.2017.07.010
  • Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., Knight, R., & Ley, R. E. (2014). Conducting a microbiome study. Cell, 158(2), 250–262. https://doi.org/10.1016/j.cell.2014.06.037
  • Gruenwald, J., Graubaum, H. J., & Harde, A. (2002). Effect of a probiotic multivitamin compound on stress and exhaustion. Advances in therapy, 19(3), 141–150. https://doi.org/10.1007/BF02850270
  • Grundlingh, J., Dargan, P. I., El-Zanfaly, M., & Wood, D. M. (2011). 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. Journal of medical toxicology : official journal of the American College of Medical Toxicology, 7(3), 205–212. https://doi.org/10.1007/s13181-011-0162-6
  • Hagio, M., Matsumoto, M., Yajima, T., Hara, H., & Ishizuka, S. (2010). Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. Journal of applied physiology (Bethesda, Md. : 1985), 109(3), 663–668. https://doi.org/10.1152/japplphysiol.00777.2009
  • Hassan, Y., Head, V., Jacob, D., Bachmann, M. O., Diu, S., & Ford, J. (2016). Lifestyle interventions for weight loss in adults with severe obesity: a systematic review. Clinical obesity, 6(6), 395–403. https://doi.org/10.1111/cob.12161
  • Haywood, B. A., Black, K. E., Baker, D., McGarvey, J., Healey, P., & Brown, R. C. (2014). Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. Journal of science and medicine in sport, 17(4), 356–360. https://doi.org/10.1016/j.jsams.2013.08.004
  • Heintz-Buschart, A., & Wilmes, P. (2018). Human Gut Microbiome: Function Matters. Trends in microbiology, 26(7), 563–574. https://doi.org/10.1016/j.tim.2017.11.002
  • Hoffman-Goetz, L., Pervaiz, N., & Guan, J. (2009). Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain, behavior, and immunity, 23(4), 498–506. https://doi.org/10.1016/j.bbi.2009.01.015
  • Hoffman-Goetz, L., Pervaiz, N., Packer, N., & Guan, J. (2010). Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain, behavior, and immunity, 24(7), 1105–1115. https://doi.org/10.1016/j.bbi.2010.05.001
  • Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in't Veld, J. H. (1998). Overview of gut flora and probiotics. International journal of food microbiology, 41(2), 85–101. https://doi.org/10.1016/s0168-1605(98)00044-0
  • Hsu, Y. J., Huang, W. C., Lin, J. S., Chen, Y. M., Ho, S. T., Huang, C. C., & Tung, Y. T. (2018). Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients, 10(7), 862. https://doi.org/10.3390/nu10070862
  • Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evidence-based complementary and alternative medicine : eCAM, 2012, 364741. https://doi.org/10.1155/2012/364741
  • Hughes, C., Davoodi-Semiromi, Y., Colee, J. C., Culpepper, T., Dahl, W. J., Mai, V., Christman, M. C., & Langkamp-Henken, B. (2011). Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. The American journal of clinical nutrition, 93(6), 1305–1311. https://doi.org/10.3945/ajcn.111.014126
  • Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. Journal of ethnopharmacology, 143(2), 397–405. https://doi.org/10.1016/j.jep.2012.07.004
  • Jäger, R., Purpura, M., Stone, J. D., Turner, S. M., Anzalone, A. J., Eimerbrink, M. J., Pane, M., Amoruso, A., Rowlands, D. S., & Oliver, J. M. (2016). Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients, 8(10), 642. https://doi.org/10.3390/nu8100642
  • Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07
  • Janssens, P. L., Penders, J., Hursel, R., Budding, A. E., Savelkoul, P. H., & Westerterp-Plantenga, M. S. (2016). Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PloS one, 11(4), e0153134. https://doi.org/10.1371/journal.pone.0153134
  • Jaquet, M., Rochat, I., Moulin, J., Cavin, C., & Bibiloni, R. (2009). Impact of coffee consumption on the gut microbiota: a human volunteer study. International journal of food microbiology, 130(2), 117–121. https://doi.org/10.1016/j.ijfoodmicro.2009.01.011
  • Jeukendrup, A. E., Vet-Joop, K., Sturk, A., Stegen, J. H., Senden, J., Saris, W. H., & Wagenmakers, A. J. (2000). Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clinical science (London, England : 1979), 98(1), 47–55.
  • Jost L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439. https://doi.org/10.1890/06-1736.1
  • Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E., Castellani, J. W., Gundersen, Y., Hoke, A. V., Levangie, M. W., Kumar, R., Chakraborty, N., Gautam, A., Hammamieh, R., Martini, S., Montain, S. J., & Pasiakos, S. M. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American journal of physiology. Gastrointestinal and liver physiology, 312(6), G559–G571. https://doi.org/10.1152/ajpgi.00066.2017
  • Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., & Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PloS one, 4(12), e8099. https://doi.org/10.1371/journal.pone.0008099
  • Keohane, D. M., Woods, T., O'Connor, P., Underwood, S., Cronin, O., Whiston, R., O'Sullivan, O., Cotter, P., Shanahan, F., & Molloy, M. G. M. (2019). Four men in a boat: Ultra-endurance exercise alters the gut microbiome. Journal of science and medicine in sport, 22(9), 1059–1064. https://doi.org/10.1016/j.jsams.2019.04.004
  • L'Huillier, C., Jarbeau, M., Achamrah, N., Belmonte, L., Amamou, A., Nobis, S., Goichon, A., Salameh, E., Bahlouli, W., do Rego, J. L., Déchelotte, P., & Coëffier, M. (2019). Glutamine, but not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients, 11(6), 1348. https://doi.org/10.3390/nu11061348
  • Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of agricultural and food chemistry, 47(4), 1460–1466. https://doi.org/10.1021/jf981149l
  • Liu, W. Y., Lu, D. J., Du, X. M., Sun, J. Q., Ge, J., Wang, R. W., Wang, R., Zou, J., Xu, C., Ren, J., Wen, X. F., Liu, Y., Cheng, S. M., Tan, X., Pekkala, S., Munukka, E., Wiklund, P., Chen, Y. Q., Gu, Q., Xia, Z. C., … Cheng, S. (2014). Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men--the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC public health, 14, 48. https://doi.org/10.1186/1471-2458-14-48
  • Lollo, P. C., Cruz, A. G., Morato, P. N., Moura, C. S., Carvalho-Silva, L. B., Oliveira, C. A., Faria, J. A., & Amaya-Farfan, J. (2012). Probiotic cheese attenuates exercise-induced immune suppression in Wistar rats. Journal of dairy science, 95(7), 3549–3558. https://doi.org/10.3168/jds.2011-5124
  • Luo, B., Xiang, D., Nieman, D. C., & Chen, P. (2014). The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense. Brain, behavior, and immunity, 39, 99–106. https://doi.org/10.1016/j.bbi.2013.11.013
  • Lyte, M., Li, W., Opitz, N., Gaykema, R. P., & Goehler, L. E. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiology & behavior, 89(3), 350–357. https://doi.org/10.1016/j.physbeh.2006.06.019
  • Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–1283. https://doi.org/10.1136/gutjnl-2013-304833
  • Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J., & Woods, J. A. (2019). Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exercise and sport sciences reviews, 47(2), 75–85. https://doi.org/10.1249/JES.0000000000000183
  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1 Suppl), 230S–242S. https://doi.org/10.1093/ajcn/81.1.230S
  • Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. A., & Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME journal, 7(10), 1933–1943. https://doi.org/10.1038/ismej.2013.89
  • Martarelli, D., Verdenelli, M. C., Scuri, S., Cocchioni, M., Silvi, S., Cecchini, C., & Pompei, P. (2011). Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current microbiology, 62(6), 1689–1696. https://doi.org/10.1007/s00284-011-9915-3
  • Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936
  • Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, biotechnology, and biochemistry, 72(2), 572–576. https://doi.org/10.1271/bbb.70474
  • Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., Ljungqvist, A., … Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. British journal of sports medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
  • Mawdsley, J. E., & Rampton, D. S. (2006). The role of psychological stress in inflammatory bowel disease. Neuroimmunomodulation, 13(5-6), 327–336. https://doi.org/10.1159/000104861
  • Messina, G., Dalia, C., Tafuri, D., Monda, V., Palmieri, F., Dato, A., Russo, A., De Blasio, S., Messina, A., De Luca, V., Chieffi, S., & Monda, M. (2014). Orexin-A controls sympathetic activity and eating behavior. Frontiers in psychology, 5, 997. https://doi.org/10.3389/fpsyg.2014.00997
  • Michalickova, D., Kotur-Stevuljevic, J., Miljkovic, M., Dikic, N., Kostic-Vucicevic, M., Andjelkovic, M., Koricanac, V., & Djordjevic, B. (2018). Effects of Probiotic Supplementation on Selected Parameters of Blood Prooxidant-Antioxidant Balance in Elite Athletes: A Double-Blind Randomized Placebo-Controlled Study. Journal of human kinetics, 64, 111–122. https://doi.org/10.1515/hukin-2017-0203
  • Mielgo-Ayuso, J., Marques-Jiménez, D., Refoyo, I., Del Coso, J., León-Guereño, P., & Calleja-González, J. (2019). Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients, 11(10), 2313. https://doi.org/10.3390/nu11102313
  • Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015). Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PloS one, 10(5), e0125889. https://doi.org/10.1371/journal.pone.0125889
  • Mills, S., Stanton, C., Lane, J. A., Smith, G. J., & Ross, R. P. (2019). Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 11(4), 923. https://doi.org/10.3390/nu11040923
  • Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. Sports health, 14(6), 894–898. https://doi.org/10.1177/19417381211060006
  • Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of agricultural and food chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326t
  • Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., Black, K., Gleeson, M., Pyne, D. B., Wells, S. D., Arent, S. M., Kreider, R. B., Campbell, B. I., Bannock, L., Scheiman, J., Wissent, C. J., Pane, M., Kalman, D. S., Pugh, J. N., … Antonio, J. (2020). The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1), 24. https://doi.org/10.1186/s12970-020-00353-w
  • Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., Viggiano, A., Cibelli, G., Chieffi, S., Monda, M., & Messina, G. (2017). Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative medicine and cellular longevity, 2017, 3831972. https://doi.org/10.1155/2017/3831972
  • Moreno-Pérez, D., Bressa, C., Bailén, M., Hamed-Bousdar, S., Naclerio, F., Carmona, M., Pérez, M., González-Soltero, R., Montalvo-Lominchar, M. G., Carabaña, C., & Larrosa, M. (2018). Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study. Nutrients, 10(3), 337. https://doi.org/10.3390/nu10030337
  • Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813
  • O'Brien, K. V., Stewart, L. K., Forney, L. A., Aryana, K. J., Prinyawiwatkul, W., & Boeneke, C. A. (2015). The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. Journal of dairy science, 98(11), 7446–7449. https://doi.org/10.3168/jds.2015-9392
  • O'Sullivan, O., Cronin, O., Clarke, S. F., Murphy, E. F., Molloy, M. G., Shanahan, F., & Cotter, P. D. (2015). Exercise and the microbiota. Gut microbes, 6(2), 131–136. https://doi.org/10.1080/19490976.2015.1011875
  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. https://doi.org/10.1371/journal.pbio.0050177
  • Paulsen, J. A., Ptacek, T. S., Carter, S. J., Liu, N., Kumar, R., Hyndman, L., Lefkowitz, E. J., Morrow, C. D., & Rogers, L. Q. (2017). Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 25(5), 1563–1570. https://doi.org/10.1007/s00520-016-3568-5
  • Peppler, W. T., Anderson, Z. G., Sutton, C. D., Rector, R. S., & Wright, D. C. (2016). Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice. American journal of physiology. Regulatory, integrative and comparative physiology, 310(10), R934–R942. https://doi.org/10.1152/ajpregu.00497.2015
  • Perna, S., Alalwan, T. A., Alaali, Z., Alnashaba, T., Gasparri, C., Infantino, V., Hammad, L., Riva, A., Petrangolini, G., Allegrini, P., & Rondanelli, M. (2019). The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review. International journal of molecular sciences, 20(20), 5232. https://doi.org/10.3390/ijms20205232
  • Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., Sodergren, E., & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. https://doi.org/10.1186/s40168-017-0320-4
  • Philp, A., Hargreaves, M., Baar, K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol - Endocrinol Metab. 2012;302(11).
  • Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., & Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS one, 9(4), e93827. https://doi.org/10.1371/journal.pone.0093827
  • Przewłócka, K., Folwarski, M., Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., & Kaczor, J. J. (2020). Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients, 12(5), 1451. https://doi.org/10.3390/nu12051451
  • Pugh, J. N., Sparks, A. S., Doran, D. A., Fleming, S. C., Langan-Evans, C., Kirk, B., Fearn, R., Morton, J. P., & Close, G. L. (2019). Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. European journal of applied physiology, 119(7), 1491–1501. https://doi.org/10.1007/s00421-019-04136-3
  • Qiao, Y., Sun, J., Ding, Y., Le, G., & Shi, Y. (2013). Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied microbiology and biotechnology, 97(4), 1689–1697. https://doi.org/10.1007/s00253-012-4323-6
  • Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., Casanueva, F., & Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8(5), e65465. https://doi.org/10.1371/journal.pone.0065465
  • Quigley E. M. (2009). Do Patients with Functional Gastrointestinal Disorders have an Altered Gut Flora?. Therapeutic advances in gastroenterology, 2(4), 23–30. https://doi.org/10.1177/1756283X09335636
  • Rajilić-Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S., & de Vos, W. M. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141(5), 1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043
  • Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118(2), 229–241. https://doi.org/10.1016/j.cell.2004.07.002
  • Rao, A. V., Bested, A. C., Beaulne, T. M., Katzman, M. A., Iorio, C., Berardi, J. M., & Logan, A. C. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut pathogens, 1(1), 6. https://doi.org/10.1186/1757-4749-1-6
  • Ren, M., Zhang, S. H., Zeng, X. F., Liu, H., & Qiao, S. Y. (2015). Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. Asian-Australasian journal of animal sciences, 28(12), 1742–1750. https://doi.org/10.5713/ajas.14.0131
  • Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L. R., Scaldaferri, F., Pulcini, G., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393
  • Rodriguez-Miguelez, P., Fernandez-Gonzalo, R., Almar, M., Mejías, Y., Rivas, A., de Paz, J. A., Cuevas, M. J., & González-Gallego, J. (2014). Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordrecht, Netherlands), 36(6), 9734. https://doi.org/10.1007/s11357-014-9734-0
  • Rowland, I., Capurso, L., Collins, K., Cummings, J., Delzenne, N., Goulet, O., Guarner, F., Marteau, P., & Meier, R. (2010). Current level of consensus on probiotic science--report of an expert meeting--London, 23 November 2009. Gut microbes, 1(6), 436–439. https://doi.org/10.4161/gmic.1.6.13610
  • Ruiz-Iglesias, P., Estruel-Amades, S., Massot-Cladera, M., Franch, À., Pérez-Cano, F. J., & Castell, M. (2022). Rat Mucosal Immunity following an Intensive Chronic Training and an Exhausting Exercise: Effect of Hesperidin Supplementation. Nutrients, 15(1), 133. https://doi.org/10.3390/nu15010133
  • Rycroft, A. N., & Garside, L. H. (2000). Actinobacillus species and their role in animal disease. Veterinary journal (London, England : 1997), 159(1), 18–36. https://doi.org/10.1053/tvjl.1999.0403
  • Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M., & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772. https://doi.org/10.1073/pnas.0808567105
  • Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M., & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104–1109. https://doi.org/10.1038/s41591-019-0485-4
  • Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics--approaching a definition. The American journal of clinical nutrition, 73(2 Suppl), 361S–364S. https://doi.org/10.1093/ajcn/73.2.361s
  • Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., & Kimura, I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific reports, 9(1), 16574. https://doi.org/10.1038/s41598-019-53242-x
  • Soares, A. D. N., Wanner, S. P., Morais, E. S. S., Hudson, A. S. R., Martins, F. S., & Cardoso, V. N. (2019). Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients, 11(10), 2352. https://doi.org/10.3390/nu11102352
  • Spriet L. L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports medicine (Auckland, N.Z.), 44 Suppl 1(Suppl 1), S87–S96. https://doi.org/10.1007/s40279-014-0154-1
  • Spyropoulos, B. G., Misiakos, E. P., Fotiadis, C., & Stoidis, C. N. (2011). Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Digestive diseases and sciences, 56(2), 285–294. https://doi.org/10.1007/s10620-010-1307-1
  • Stilling, R. M., Ryan, F. J., Hoban, A. E., Shanahan, F., Clarke, G., Claesson, M. J., Dinan, T. G., & Cryan, J. F. (2015). Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, behavior, and immunity, 50, 209–220. https://doi.org/10.1016/j.bbi.2015.07.009
  • Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P., & Lochs, H. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. Journal of clinical microbiology, 43(7), 3380–3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005
  • Tannock G. W. (2007). What immunologists should know about bacterial communities of the human bowel. Seminars in immunology, 19(2), 94–105. https://doi.org/10.1016/j.smim.2006.09.001
  • Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. https://doi.org/10.1016/j.jand.2015.12.006
  • Trovato, F. M., Martines, G. F., Brischetto, D., Catalano, D., Musumeci, G., & Trovato, G. M. (2016). Fatty liver disease and lifestyle in youngsters: diet, food intake frequency, exercise, sleep shortage and fashion. Liver international : official journal of the International Association for the Study of the Liver, 36(3), 427–433. https://doi.org/10.1111/liv.12957
  • Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American journal of clinical nutrition, 93(1), 62–72. https://doi.org/10.3945/ajcn.110.000075
  • Ünsal, C., Ünsal, H., Ekici, M., Koç Yildirim, E., Üner, A. G., Yildiz, M., Güleş, Ö., Ekren Aşici, G. S., Boyacioğlu, M., Balkaya, M., & Belge, F. (2018). The effects of exhaustive swimming and probiotic administration in trained rats: Oxidative balance of selected organs, colon morphology, and contractility. Physiology international, 105(4), 309–324. https://doi.org/10.1556/2060.105.2018.4.25
  • van Hall G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta physiologica (Oxford, England), 199(4), 499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
  • Veldurthy, V., Wei, R., Oz, L., Dhawan, P., Jeon, Y. H., & Christakos, S. (2016). Vitamin D, calcium homeostasis and aging. Bone research, 4, 16041. https://doi.org/10.1038/boneres.2016.41
  • Viloria, M., Lara-Padilla, E., Campos-Rodríguez, R., Jarillo-Luna, A., Reyna-Garfias, H., López-Sánchez, P., Rivera-Aguilar, V., Salas-Casas, A., Berral de la Rosa, F. J., & García-Latorre, E. (2011). Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunological investigations, 40(6), 640–656. https://doi.org/10.3109/08820139.2011.575425
  • Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., Fleshner, M., Green, C., Pedersen, B. K., Hoffman-Goetz, L., Rogers, C. J., Northoff, H., Abbasi, A., & Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise immunology review, 17, 6–63.
  • Welly, R. J., Liu, T. W., Zidon, T. M., Rowles, J. L., 3rd, Park, Y. M., Smith, T. N., Swanson, K. S., Padilla, J., & Vieira-Potter, V. J. (2016). Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Medicine and science in sports and exercise, 48(9), 1688–1698. https://doi.org/10.1249/MSS.0000000000000964
  • Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong, F. S., Szot, G. L., Bluestone, J. A., Gordon, J. I., & Chervonsky, A. V. (2008). Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455(7216), 1109–1113. https://doi.org/10.1038/nature07336
  • West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., Christophersen, C. T., Conlon, M. A., & Fricker, P. A. (2011). Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutrition journal, 10, 30. https://doi.org/10.1186/1475-2891-10-30
  • Williams N. T. (2010). Probiotics. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists, 67(6), 449–458. https://doi.org/10.2146/ajhp090168
  • Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.), 334(6052), 105–108. https://doi.org/10.1126/science.1208344
  • Yang Z, Huang S, Zou D, Dong D, He X, Liu N, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids. 2016;48(12):2731–45.
  • Yang, Y., Shi, Y., Wiklund, P., Tan, X., Wu, N., Zhang, X., Tikkanen, O., Zhang, C., Munukka, E., & Cheng, S. (2017). The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 9(8), 792. https://doi.org/10.3390/nu9080792
  • Zhao, X., Zhang, Z., Hu, B., Huang, W., Yuan, C., & Zou, L. (2018). Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Frontiers in microbiology, 9, 765. https://doi.org/10.3389/fmicb.2018.00765
  • Zhou, H., Yu, B., Gao, J., Htoo, J. K., & Chen, D. (2018). Regulation of intestinal health by branched-chain amino acids. Animal science journal = Nihon chikusan Gakkaiho, 89(1), 3–11. https://doi.org/10.1111/asj.12937
  • Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. S., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature genetics, 50(6), 790–795. https://doi.org/10.1038/s41588-018-0135-7

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
32443960

YADDA identifier

bwmeta1.element.ojs-doi-10_18276_cej_2024_1-03
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.