Preferences help
enabled [disable] Abstract
Number of results
2016 | 49 | 2 |
Article title

Chemical Composition of Soil Contaminated with Tri- and Hexavalent Chromium Amended with Compost, Zeolite and Calcium Oxide

Title variants
Languages of publication
The studies involved determining the influence of Cr(III) and Cr(VI), as well as compost, zeolite and calcium oxide on the content of selected macronutrients and trace elements in soil in which oats were grown. An increase in the content of total chromium, manganese, zinc and nickel took place along with increasing contamination with Cr(III) and Cr(VI). In pots with Cr(VI), the addition of compost significantly increased the contents of copper, zinc and cobalt in the analyzed soil as compared to the control groups. The application of calcium oxide significantly limited the content of copper and cobalt in pots with trivalent chromium, and nickel in pots with Cr(VI); it also contributed to an increase in the contents of chromium and copper (pots with Cr(VI)).
Physical description
08 - 06 - 2017
  • [1] Adamcová, D., Vaverková, M., Břoušková, E., 2016. Emission assessment at the Štěpánovice municipal solid waste landfill focusing on CH4 emissions. Journal of Ecological Engineering, 17, 3: 9–17.
  • [2] Antoniadis, V., Polyzois, T., Golia, E.E., Petropoulos, S.A., 2017. Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere, 171: 729–734.
  • [3] Arshad, M., Khan, A.H.A., Hussain, I., Zaman, B., Anees, M., Iqbal, M., Soja, G., Linde, C., Yousaf, S., 2017. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 114: 90–98.
  • [4] Banks, M.K., Schwab, A.P., Henderson, C., 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62: 255–264.
  • [5] Dumoulin, D., Billon, G., Proix, N., Frérot, H., Pauwels, M., Saumitou-Laprade, P. 2017. Impact of a zinc processing factory on surrounding surficial soil contamination. Journal of Geochemical Exploration, 172: 142–150.
  • [6] Grzywnowicz, I., 1997. Zawartość i rozmieszczenie niklu w glebach różnych regionów Polski. Zeszyty Problemowe Postępów Nauk Rolniczych, 448a: 147–153.
  • [7] Guimarães, M.M, Carvalho, A.C.M.S., Silva, M.S., 2016. Effect of chromium supplementation on the glucose homeostasis and anthropometry of type 2 diabetic patients: Double blind, randomized clinical trial: Chromium, glucose homeostasis and anthropometry. Journal of Trace Elements in Medicine and Biology, 36: 65–72.
  • [8] Hao, Q., Jiang, C., 2015. Heavy metal concentrations in soils and plants in Rongxi Manganese mine of chongqing, southwest of China. Acta Ecologica Sinica, 35(1): 46–51.
  • [9] Herwijnen, R., Hutchings, T.R., Ai-Tabbaa, A., Moffat, A.J., Johns, M.L., Ouki, S.K., 2007. Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150: 347–354.
  • [10] Hewelke, E., Szatyłowicz, J., Gnatowski, T., Oleszczuk, R., 2014. Zmienność przestrzenna uwilgotnienia hydrofobowej gleby organicznej w warunkach przepływu preferencyjnego. Rocznik Ochrona Środowiska, 16, 1: 580–607.
  • [11] Hewelke, P., Gnatowski, T., Hewelke, E., Tyszka, J., Zakowicz, S., 2015. Analysis of water retention capacity for select forest soils in Poland. Polish Journal of Environmental Studies, 24, 3: 1013–1019.
  • [12] Jalali, M., Majeri, M., 2016. Cobalt sorption–desorption behavior of calcareous soils from some Iranian soils. Chemie der Erde – Geochemistry, 76, 1: 95–102.
  • [13] Kabata-Pendias, A., Pendias, H., 2011. Trace Elements in Soil and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, pp. 365.
  • [14] Klute, A., 1996. Methods of soil analysis. Madison: American Society of Agronomy. Agronomy Monograph, 9.
  • [15] Król, M., Mikuła, A., 2017. Synthesis of the zeolite granulate for potential sorption application. Microporous and Mesoporous Materials, 243: 201–205.
  • [16] Liu, H., 2016. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil. Science of the Tototal Environment, 566–567: 8–14.
  • [17] Lukina, A.O., Boutin, C., Rowland, O., Carpenter, D.J., 2016. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere, 162: 355–364.
  • [18] Mathebula, M.W., Mandiwana, K., Panichev, N., 2017. Speciation of chromium in bread and breakfast cereals. Food Chemistry, 217: 655–659.
  • [19] Mazur, Z., Radziemska, M., Fronczyk, J., Jeznach, J., 2015. Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fresenius Environmental Bulletin, 24, 1a: 216–223.
  • [20] Mocek, A., Drzymała, S., 2010.Genesis, Analysis and Soil Classification. Poznań University of Life Sciences (in Polish).
  • [21] Otabbong, E., 1990. Chemistry of Cr in some Swedish soils. Interreaction between CrO3 and Si(OH)4 ant its impact on Cr toxicity and elemental contents in ryegrass (Lolium perenne). Plant Soil, 123: 89–93.
  • [22] Pils, J.R.V., Karathanasis, A.D., Mueller, T.G., 2004. Concentration and distribution of six trace metals in nothern Kentucky soils. Soil Sediment Contamination, 13(1): 37–51.
  • [23] Radziemska, M., Mazur, Z., 2016. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. Journal of Ecological Engineering, 17, 3: 125–133.
  • [24] Radziemska, M., Mazur, Z., Jeznach, J., 2013. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chemical Engineering Transactions, 32: 301–306.
  • [25] Radziemska, M., Mazur, Z., Fronczyk, J., Jeznach, J., 2016. Effect of reactive materials on the content of selected elements in Indian mustard grown in Cr(VI)-contaminated soils. Journal of Ecological Engineering, 17, 2: 141–147.
  • [26] Radziemska, M., Fronczyk, J., 2015. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area, Central Poland. International Journal of Environmental Research and Public Health, 12: 13372–13387.
  • [27] Riehm, H., 1958. Die ammoniumlaktatessigsaure-methode zur bestimmung der leichtloeslichen phosphosaure in karbonathaltigen boden. Agrochimica, 3: 49–65.
  • [28] Sas, W., Głuchowski, A., Radziemska, M., Dzięcioł, J., Szymański, A., 2015. Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials, 8: 4857–4875.
  • [29] Sasso, A.F., Schlosser, P.M., 2015. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach. Toxicology and Applied Pharmacology, 287(3): 293–298.
  • [30] Silva, B., Figueiredo, H., Quintelas, C., Neves, I.C., Tavares, T., 2008. Zeolites as supports for biorecovery od hexavalent chromium and trivalent chromium. Microporous and Mesoporous Materials, 116: 550–560.
  • [31] Thacher, R., Hsu, L., Ravindran, V., Nealson, K.H., Pirbazari, M., 2015. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter. Chemical Engineering Science, 138: 552–565.
  • [32] Vareda, J.P., Valente, A.J.M, Durães, L., 2016. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels. Advances in Colloid and Interface Science, 237: 28–42.
  • [33] Wyszkowski, M., Radziemska, M., 2009a. The effect of chromium content in soil on the concentration of some mineral elements in plants. Fresenius Environmental Bulletin, 18, 7: 1039–1045.
  • [34] Wyszkowski, M., Radziemska, M., 2009b. Content of nitrogen compounds in soil polluted with chromium (III), chromium (VI) after application of compost, zeolite and calcium oxide. Ecological Chemistry and Engineering A, 16(8): 1039–1046.
  • [35] Wyszkowski, M., Radziemska, M., 2009c. Oddziaływanie kompostu, zeolitu i tlenku wapnia na zawartość węgla organicznego i składników mineralnych w glebie zanieczyszczonej chromem. Zeszyty Problemowe Postępów Nauk Rolniczych, 537: 413–420.
  • [36] Wyszkowski, M., Radziemska, M., 2010. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. Journal of Toxicology and Environmental Health, Part A, 73(17–18): 1274–1282.
  • [37] Wyszkowski, M., Radziemska, M., 2013a. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fresenius Environmental Bulletin, 22, 4: 979–986.
  • [38] Wyszkowski, M., Radziemska, M., 2013b. Assessment of tri- and hexavalent chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water, Air, & Soil Pollution, 244: 1619–1632.
  • [39] Yilmaz, E., Soylak, M., 2016. Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium (III/VI) in environmental samples. Talanta, 60: 680–685.
  • [40] Yoo, J., Shim, T., Hur, J., Jung, J., 2016. Role of polarity fractions of effluent organic matter in binding and toxicity of silver and copper. Journal of Hazardous Materials, 317: 344–351.
  • [41] Yu, C.H., Huang, L., Shin, J.Y., Artigas, F., Fan, Z.T., 2014. Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources. Atmospheric Environment, 94: 701–708.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.