PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 71 | 2 |
Article title

Antimicrobial effects of propolis on Clostridium difficile strains belonging to the different PCR-ribotypes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Clostridium difficile is a Gram-positive, anaerobic rod-shaped bacterium, which is a primary cause of nosocomial diarrhoea. The rising incidence of antibiotic resistance in pathogens such as C. difficile makes the new antibacterial natural products research very important and necessary to conduct. It has been observed that propolis has bactericidal effects. Propolis is a natural resinous product that is manufactured by honeybees (Apis mellifera). The antimicrobial activity of propolis is an important biological property. In spite of the large composition differences of the propolis types, all of them have antimicrobial activity. Twenty strains of the C.difficile belonging to four prominent PCR-ribotypes (RT) (RT017, RT023, RT027, and RT046) were used in research. MBC value were determined by broth dilution method. Propolis samples were obtained from honey bees farm in lubelskie woyevodship. Bactericidal effect of the propolis on C.difficile strains was observed at its concentration of  39 mg/ml.
Year
Volume
71
Issue
2
Physical description
Dates
published
2016
online
21 - 02 - 2018
Contributors
References
  • Bankova V.S., Castro de S.L., Marcucci M.C. 2000. Propolis: Recent advances in chemistry and plant origin. Apidologie 31: 3–15.
  • Bankova V.S. 2005. Recent trends and important developments in propolis research. Evidencebased complementary and alternative medicine. 2(1): 29–32. DOI: 10.1093/ecam/neh059.
  • Banskota A. H., Tezuka Y., Adnyana I.K. et al. 2001 Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 8(1):16–23. DOI: 10.1078/0944-7113-00004.
  • Davies K.A., Ashwin H., Longshaw C.M., et al. 2016. EUCLID Study group. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 21(29). DOI: http://dx. DOI.org/10.2807/1560-7917.ES.2016.21.29.30294.
  • Farooqui T., Farooqui A. 2010 Molecular Mechanism Underlying the Therapeutic Activities of Propolis: A Critical Review. Curr. Nutr. Food Sci. 6:188–199. DOI:10.2174/157340110792389136.
  • Giles S.L. Laheij R.J. 2017. Successful treatment of persistent Clostridium difficile infection with Manuka honey. International Journal of Antimicrobial Agents 49: 522–523. DOI:10.1016/j.ijantimicag.2017.02.005.
  • Huang H., Cui-Ping Z., Wang K. 2014. Recent Advances in the Chemical Composition of Propolis. Molecules. 19: 19610–19632.
  • Janoir C. 2016. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37:13–24. DOI: 10.1016/j.anaerobe.2015.10.009.
  • Kubina R., Kabała-Dzik A., Wojtyczka R.D. et al. 2009. Przeciwbakteryjne działanie galanginy
  • zawartej w propolisie w stosunku do bakterii Gram-dodatnich. Farm. Przegl. Nauk. 8: 24–26.
  • Liberio S.A., Pereira A.L., Araujo M.J., et al. 2009. The potential use of propolis as a cariostatic agent and its actions on mutans group Streptococci. Journal of Ethnopharmacology 125 (1):1–9. DOI: 10.1016/j.jep.2009.04.047.
  • Pepeljnjak S., Kosalec I. 2004. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiology Letters 240(1): 111–116. DOI: 10.1016/j.femsle.2004.09.018.
  • Piotrowski M., Karpiński P., Pituch H. et al. 2017. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. European Journal of Clinical Microbiology & Infectious Diseases 36(9): 1661–1664. DOI: 10.1007/s10096-017-2980-1.
  • Pituch H., Obuch-Woszczatynski P., Lachowicz D. et al. 2015. Polish Clostridium difficile Study group (2015). Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill. 20(38). DOI: 10.2807/1560-7917.ES.2015.20.38.30025.
  • Rupnik M., Wilcox M.H., Gerding D.N. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7:526–536. DOI: 10.1038/nrmicro2164.
  • Simon L., Stubbs J., Brazier J.S. et al. 1999 PCR Targeted to the 16S-23S rRNA Gene Intergenic Spacer Region of Clostridium difficile and Construction of a Library Consisting of 116 Different PCR Ribotypes. Journal of Clinical Microbiology 37(2): 461–463.
  • Starzyk J., Doleżal M. 1985. Badania nad działaniem propolisu na drobnoustroje bakteryjne oporne na antybiotyki. V Międzynar. Symp. Apiter, Kraków. Zagadnienia wybrane. Wyd. Pol. Zw. Pszczel., Kraków–Kamianna 1986.
  • Tosi E.A., Ortega M.E., Cazzoli A.F. 2007. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chemistry 104 (3):1025–1029. DOI: 10.1016/j.foodchem.2007.01.011.
  • Vecchi de E., Drago L. 2007. Propolis antimicrobial activity: what’s new? Infez Med. 15: 7–15.
  • Vedantam G., Clark A., Chu M. et al. 2012. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes. 3:121–134. DOI: 10.4161/gmic.19399.
  • Z acharioudakis I.M., Zervou F.N, Pliakos E.E. et al. 2015. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 110: 381–390. DOI: 10.1038/ajg.2015.22.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_c_2016_71_2_33
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.