Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 72 | 2 |

Article title

Wpływ typu zabudowy na intensywność turbulencyjnej wymiany masy i energii w Łodzi – wstępne wyniki badań porównawczych z lat 2013-2016

Content

Title variants

Languages of publication

PL

Abstracts

PL
W pracy opisano wyniki pomiarów turbulencyjnych strumieni ciepła jawnego i utajonego oraz gazów cieplarnianych (dwutlenek węgla i metan) przeprowadzonych w okresie sierpień-październik 2016 w dzielnicy poprzemysłowej w Łodzi, na tle wyników podobnych pomiarów prowadzonych w tych samych miesiącach w latach 2013-2015 w centrum miasta. Wyniki pomiarów potwierdziły, iż typ zabudowy oraz zależność odsetek powierzchni sztucznych/odsetek  terenów pokrytych roślinnością to bardzo ważne determinanty intensywności wymiany turbulencyjnej energii i masy pomiędzy powierzchnią miasta a atmosferą. Podobne zależności uzyskano podczas kilku kampanii pomiarowych prowadzonych w innych miasta świata (Offerle i in. 2006a, 2006b; Nordbo i in. 2012; Christen 2014; Kotthaus, Grimmond 2014a, 2014b;  Helfter i in., 2016). W centrum Łodzi zaobserwowano relatywnie wysokie strumienie ciepła oraz gazów cieplarnianych, które miały mniej (QH, QE) lub bardziej (FCO2, FCH4) wyraźnie obniżone wartości w dzielnicy o mniejszym odsetku powierzchni sztucznych, bez kanionów ulicznych oraz budynków mieszkalnych. Wydzielony przypadek elektrociepłowni, której działalności towarzyszą emisje gazów cieplarnianych rejestrowane na stanowisku LP (EC3) w dzielnicy poprzemysłowej, pokazuje że w badaniach tego typu nie należy pomijać istnienia tzw. źródeł lokalnych. Zgodnie z założeniami metody kowariancji wirów stanowiska pomiarowe strumieni turbulencyjnych instaluje się miejscach o jak najbardziej homogenicznej zabudowie. Rezultatem są uśrednione  wartości strumieni reprezentatywne dla typowych dzielnic w miastach (np. centrum, dzielnica domów jednorodzinnych, handlowa, itd.). Wyniki ze stanowiska LP EC3 pokazują jednak, że pomijanie takich miejsc może prowadzić do zaniżenia oceny intensywności wymiany gazów cieplarnianych w skali całego miasta.Zmienność strumieni turbulencyjnych energii i masy zarejestrowane w Łodzi dobrze wpisują się w dostępną wiedzę dotyczącą problemu turbulencyjnej wymiany na terenach zurbanizowanych. Podobnie jak w innych centrach miast obserwuje się tu relatywnie wysokie wartości strumieni ciepła jawnego oraz podwójne maksima w ciągu doby w przyadku strumieni gazów cieplarnianych (Offerle i in. 2006a, 2006b; Nordbo i in. 2012; Christen 2014; Kotthaus, Grimmond 2014a, 2014b). Na podstawie danych z kilkunastu miast świata (również z Łodzi), potwierdzono, że w dzielnicach o podwyższonym odsetku powierzchni pokrytych roślinnością maleją strumienie ciepła jawnego oraz dwutlenku węgla, a strumienie ciepłą utajonego rosną. Ze względu na niewielką liczbę kampanii pomiarowych strumieni metanu w miastach, w przypadku tego gazu taka zależność wciąż czeka na potwierdzenie (Nicolini i in. 2013, Christen 2014; Helfter i in. 2016). Z dotychczas opublikowanych prac wynika, iż taka zależność istnieje, np. w centrum Łodzi strumienie metanu są wyraźnie niższe niż w gęściej zabudowanym centrum Londynu. Prawdopodobnie jednak lepszą zmienną charakteryzującą przestrzenną zmienność strumienia metanu w mieście może być gęstość zaludnienia, której, w różnych dzielnicach, towarzyszy inna gęstość infrastruktury będącej potencjalnym źródłem metanu (gazociągi, sieci kanalizacyjne, ulice z ruchem samochodowym o różnym natężeniu, itd.)
EN
This paper contains the results of measurement of turbulent exchange of heat and mass in Łódź in the period 2013–2016. Measurement campaigns of sensible (QH) and latent (QE) heat fluxes as well as carbon dioxide and methane (FCO2 and FCH4) fluxes have been carried out on two urban sites characterized by different development and use. The first site has been located at the city center (artificial surfaces percentage ~60%) dominated by the net of urban canyons and 3–4 storey tenement buildings. The second site has been located at postindustrial district about 4.8 km to the north. This part of the city is characterized by lower development density (~40%) and dominated by big postindustrial buildings converted into warehouses and large stores. Turbulent fluxes QH, QE, FCO2, and FCH4 have been measured with eddy covariance technique. Both sites have been equipped with typical instrumentation set consisting of ultrasonic anemometers and water vapor, carbon dioxide and methane gas analyzers. According to eddy-covariance method principles, on both sites instruments have been mounted on the height double or more higher than mean surrounding urban canopy layer. The aim of this paper was to show variability of heat and mass fluxes registered during August, September and October 2016 in the postindustrial district and compare with the results obtained during the same months in the center of Łódź in the years 2013–2015. The results show that intensity of turbulent exchange is clearly related to land use and characteristics of urban surface. Turbulent exchange of sensible and latent heat on postindustrial area, covered by big buildings and wide market places has been smaller than in the center of Łódź, dominated by urban canyons and residential buildings. Moreover, turbulent fluxes of greenhouse gases have been also smaller especially in the case of carbon dioxide. Diurnal courses of FCO2 and FCH4 fluxes registered at the city center have been dominated by two maxima, related to diurnal rhythm of fossil fuel combustion during traffic rush hours and evening inhabitants activities (cooking, heating tec.). While traffic is much less intense in comparison with city center and there is a lack of residential buildings on postindustrial areas, carbon dioxide fluxes are much smaller there and methane fluxes have only one maximum a day.

Contributors

References

  • Aubinet M., Vesala T., Papale D., 2012: Eddy Covariance. A Practical Guide to Measurement and Data Analysis, Springer.
  • Christen A., 2014: Atmospheric measurement techniques to quantify greenhouse gas emissions from cities, Urban Climate, 10, 241–260.
  • Christen A., Vogt R., 2004: Energy and radiation balance of a Central European city, International Journal of Climatology, 24, 1395–1421.
  • Foken T., 2008: Micrometeorology, Springer, Berlin.
  • Fortuniak K., 2003: Miejska wyspa ciepła. Podstawy energetyczne, studia eksperymentalne, modele numeryczne i statystyczne, Wydawnictwo UŁ.
  • Fortuniak K., 2010: Radiacyjne i turbulencyjne składniki bilansu cieplnego terenów zurbanizowanych na przykładzie Łodzi, Wydawnictwo UŁ.
  • Fortuniak K., Pawlak W., 2015: Selected spectral characterics of turbulence over an urbanized area in the center of Łódź, Poland. Boundary Layer Meteorology, 154, 137–156.
  • Fortuniak K., Pawlak W., Siedlecki M., 2013: Integral turbulence statistics over a Central European city centre, Boundary Layer Meteorology, 146, 257–276.
  • Gioli B., Toscano P., Lugato E., Matese A., Miglietta F., Zaldei A., Vaccari F.P., 2012: Methane and carbon dioxide fl uxes and source partitioning in urban areas: The case study of Florence, Italy, Environmental Pollution, 164, 125–131.
  • Grimmond C.S.B., Oke T.R., 1999: Aerodynamic properties of urban areas derived from analysis of surface form, Journal of Applied Meteorology, 38, 1262–1292.
  • Heeb N.V., Forss A.M., Saxer C.J., Wilhelm P., 2003: Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades, Atmospheric Environment, 37, 5185–5195.
  • Helfter C., Tremper A.H., Halios C.H., Kotthaus S., Bjorkegren A., Grimmond C.S.B., Barlow J.F., Nemitz E., 2016: Spatial and temporal variability 1 of urban fl uxes of methane, carbon monoxide and carbon dioxide above London, UK, Atmospheric Chemistry and Physics, 16, 10543–10557.
  • Kłysik K., 1998: Charakterystyka powierzchni miejskiej Łodzi z klimatologicznego punktu widzenia, Acta Universitatis. Lodziensis, Folia Geographica Physica, 3, 173–185.
  • Kotthaus S., Grimmond C.S.B., 2014a: Energy exchange in a dense urban environment – Part I: Temporal variability of long-term observations in central London, Urban Climate, 10, 261–280.
  • Kotthaus S., Grimmond C.S.B., 2014b: Energy exchange in a dense urban environment – Part II: Impact of spatial heterogeneity of the surface, Urban Climate, 10, 281–307.
  • Lee X., Massman W., Law B., 2004: Handbook of Micrometeorology. A Guide for Surface Flux Measurement and Analysis. Kluwer Academic Publishers, Dordrecht.
  • LI-7700 Open Path CH4 Analyzer. Instruction Manual, Li-cor Biosciences, www.licor.com.
  • Nam E.K., Jensen T.E., Walligton T.J., 2004: Methane emissions from vehicles, Environmental Science & Technology, 38, 2005–2010.
  • Nicolini G., Castaldi S., Fratini G., Valentini R., 2013: A literature overview of micrometeorological CH4 and N2O fl ux measurements in terrestrial ecosystems, Atmospheric Environment, 81, 311–319.
  • Nordbo A., Järvi L., Haapanala S., Wood C.R., Vesala T., 2012: Fraction of natural area as main predictor of net CO2 emissions from cities, Geophysical Research Letters, 39, DOI:10.1029/2012GL053087.
  • Offerle B., Grimmond C.S.B., Fortuniak K., Kłysik K., Oke T.R., 2006a: Temporal variations in heat fl uxes over a Central European city centre, Theoretical and Applied Climatology, 84, 103–115.
  • Offerle B., Grimmond C.S.B., Fortuniak K., Pawlak W., 2006b: Intra-urban differences of surface energy fl uxes in a Central European city, Journal of Applied Meteorology and Climatology, 45, 125–136.
  • Pawlak W., Fortuniak K., Siedlecki M., 2011: Carbon dioxide fl ux in the centre of Łódź, Poland – analysis of a 2-year eddy covariance measurements data set, International Journal of Climatology, 31, 232–243.
  • Pawlak W., Fortuniak K., 2016: Eddy covariance measurements of the net turbulent methane fl ux in the city centre – results of 2-year campaign in Łódź, Poland, Atmospheric Chemistry and Physics, 16, 8281–8294.
  • Pawlak W., Fortuniak K., Siedlecki M., Zieliński M., 2016: Urban-Wetland contrast in turbulent exchange of methane, Atmospheric Environment, 145, 176–191.
  • Schmid, H.P., 1994: Source areas for scalar and scalar fl uxes, Boundary Layer Meteorology, 67, 293–318.
  • Zieliński M., Fortuniak K., Pawlak W., Siedlecki M., 2013: Turbulent sensible heat fl ux in Łódź, Central Poland, obtained from scintillometer and eddy covariance measurements, Meteorologische Zeitschrift, 22, 603–613.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_17951_b_2017_72_2_41-56
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.