Preferences help
enabled [disable] Abstract
Number of results
2015 | 70 |
Article title

Isotopic studies of nitrates – a short review

Title variants
Languages of publication
Nitrogen is an essential element for life. One of its available forms are nitrates - the compounds playing a key role in the biogeochemical N cycle. However, excessive amounts of nitrates may be harmful to organisms and the environment, therefore in recent years the emphasis is on continuous monitoring of quality of consumed water. Nitrates from different sources have wide, but different ranges δ15N and δ18O. Also researchers observed typical changes in both delta values induced by biological processes and in the case of mixing water with anthropogenic nitrates. This is a reason why the isotopic analysis are often used to identify the source of contamination in a reservoir or to quantitatively describe the processes occurring in an ecosystem.In this review article, we present a model of the global nitrogen cycle, along with the latest data on the disturbances caused by human activity. We describe the processes occurring in the N cycle and biogeochemical mechanisms, which modify the nitrogen isotopic composition in their compounds. We also present a short description of analytical techniques utilized for studying isotopic compositions of nitrates. In addition, we discussed the methods for extraction and preparation of nitrates from freshwater and ocean water, by determining the δ15N,  δ18O and δ17O (or Δ17O) values. The final part is a description of applications of developed techniques for environmental research.
Physical description
29 - 04 - 2016
  • 1. Amberger A. & Schmidt, H. L. (1987). Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochimica et Cosmochimica Acta, 51, 2699-2705.
  • 2. Anthosien A. C., Loehr R. C., Prakasam T. B. S. & Srinath E. G. (1976). Inhibition of Nitrification by Ammonia and Nitrous Acid, Journal (Water Pollution Control Federation), 48 (5), 835-852.
  • 3. Aravena R., Evans M. L. & Cherry J. A. (1993). Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water, 31, 180-186.
  • 4. Badea M., Amine A., Palleschi G., Moscone D., Volpe G. & Curulli A. (2001). New electrochemical sensors for detection of nitrites and nitrates. Journal of Electroanalytical Chemistry, 509, 66-72.
  • 5. Bigeleisen J. & Mayer M. G. (1947). Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics, 15, 261–67.
  • 6. Bigeleisen J. & Wolfsberg M. (1958). Theoretical and experimental aspects of isotope effects in chemical kinetics. In: Advances in Chemical Physics, pp. 15–76. New York: Wiley.
  • 7. Błaszczyk M. K. (2007). Mikroorganizmy w ochronie środowiska. Warszawa, Wydawnictwo Naukowe PWN.
  • 8. Bremner J. M. & Shaw K. (1955). Determination of ammonia and nitrate in soil. The Journal of Agricultural. Science, 46, 320-328.
  • 9. Bremner J.M. & Edwards A.P. (1965). Determination and isotope-ratio analysis of different forms of nitrogen in soils: I. Apparatus and procedure for distillation and determination of ammonium. Soil Science Society of America, Proceedings, 29, 504–507.
  • 10. Bremner J.M. (1965). Isotope-ratio analysis of nitrogen in nitrogen-15 tracer investigations. In: Black, C.A. (Ed.), Methods of Soil Analysis. Part 2. Agronomy 9, 1256–1286.
  • 11. Bruning-Fann C. S. & Kaneene J. B. (1993). The effects of nitrate, nitrite and N-nitroso compounds on human health: A review. Veterinary and Human Toxicology, 35(6): 521-538.
  • 12. Buczek J. & Marciniak J. (1990). Reduktaza azotanowa i reduktaza azotynowa – kluczowe enzymy asymilacji azotanów w roślinach wyższych. Wiadomości Botaniczne, 34, 19-32.
  • 13. Casciotti K. L. (2009). Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta, 73, 2061–2076.
  • 14. Casciotti K. L., Buchwald C. & McIlvin M. (2013). Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep-Sea Research I, 80, 78–93.
  • 15. Casciotti K. L., Buchwald C., Santoro A. E. &Frame C. (2011). Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment. In: Methods in Enzymology (ed. Klotz M. G.): Research on Nitrification and Related Processes, 486 (A), 253-280.
  • 16. Casciotti K. L., Sigman D. M., Hastings M. G., Böhlke J. K. & Hilkert A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74, 4905-4912.
  • 17. Cline J.D. & Kaplan I.R. (1975). Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Marine Chemistry, 3, 271-299.
  • 18. De Groot P. A. (2009). Chapter 5: Nitrogen. In: Handbook of Stable Isotope Analytical Techniques vol.2, Elsevier, Amsterdam.
  • 19. Delwiche C. C. & Steyn P. L. (1970). Nitrogen isotope fractionation in soils and microbial reactions. Environmental Science and Technology, 4, 929–935.
  • 20. Delwiche C. C. (1981). The Nitrogen Cycle and Nitrous Oxide. In: Delwiche C. C. (ed.). Denitrification, Nitrification and Athmospheric Nitrous Oxide, John Wiley, Nowy Jork, 1-15.
  • 21. Ellis G., Adatia I., Yazdanpanah M. & Makela S. K. (1998). Nitrite and nitrate analyses: a clinical biochemistry perspective. Clinical Biochemistry, 31(4), 195-220.
  • 22. Fenchel T. & Blackburn T. H. (1979). Bacteria and Mineral Cycling. London, Academic Press.
  • 23. Galloway J. N., Dentener F.J., Capone D. G., Boyer E. W., Howarth R. W., Seitzinger S. P., Asner G. P., Cleveland C. C., Green P. A., Holland E. A., Karl D. M., Michaels A. F., Porter J. H., Townsend A. R. & Vösmarty C. J. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2), 153–226.
  • 24. Gebus B. & Hałas S. (2012). Micro ion selective electrodes – an alternative for nitrate/nitrite precision concentration measurements. Mineralogia – Special Papers, 39, 46.
  • 25. Gebus B., Czupyt Z., Hałas S. (2012). Simultaneous preparation of N2 and CO2 for stable isotope analysis from nitrate samples. Mineralogia – Special Papers, 39, 44-45.
  • 26. Geng L., Schauer A. J., Kunasek S .A., Sofen E. D., Erbland J., Savarino J., Allman D.J., Sletten R. S. & Alexander B. (2013). Analysis of oxygen-17 excess of nitrate and sulfate at sub-micromole levels using the pyrolysis method. Rapid Communication in Mass Spectrometry, 27, 2411-2419.
  • 27. Gierak A. & Leboda R. (1999). Analiza azotanów i bromianów powstających podczas dezynfekcji wody ozonem. Ochrona środowiska, 4 (75), 13-16.
  • 28. Gruber N. (2008). The Marine Nitrogen Cycle: Overview and Challenges. In: Capone D. G., Bronk D. A., Mulholland M. R. & Carpenter E. J. (Eds.) Nitrogen in the Marine Environment, 2nd Ed., Academic Press, 1-50.
  • 29. Hoering T. (1955). Variations of nitrogen fifteen abundance in naturally occuring substances. Science, 122, 1233-1234.
  • 30. Hofmann & Pack (2010). Technique for high-precision analysis of triple oxygen isotope ratios in carbon dioxide. Analytical Chemistry, 82, 4357-4361.
  • 31. Hosono T., Tokunaga T., Kagabu M., Nakata H., Orishikida T., Lin I-T. & Shimada J. (2013). The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution, Water Research, 4, 2661-2675.
  • 32. Huber B., Bernasconi S. M., Luster J. & Graf Pannatier E. (2011). Anew isolation procedure of nitrate from freshwater for nitrogen and oxygen isotope analysis. Rapid Communication in Mass Spectrometry, 25, 3056–3062.
  • 33. Jaffe D. A. (1992). The Nitrogen Cycle. In: Butcher S. S., Charlson R. J., Orians G. H. & Wolfe G. V. (Eds).Global Biogeochemical Cycles, Academic Press Inc, San Diego, 263-284.
  • 34. Jakszyn P. & González C. A. (2006). Nitrosamine and related food intake and gastric and oesophageal cancer risk: A systematic review of the epidemiological evidence. World Journal of Gastroenterology, 12(27), 4296 – 4303.
  • 35. Jetten M. S., Strous M., van de Pas-Schooned K. T., Schalk J., van Dongen U. G., van de Graaf A. A., Logemann S., Muyzer G., van Loosdrecht M. C. & Kuenen J. G. (1998). The anaerobic oxidation of ammonia. FEMS Microbiology Reviews, 22, 421-437.
  • 36. Joo Y. J., Li D. D. & Lerman A. (2013). Global Nitrogen Cycle: Pre-Anthropocene Mass and Isotope Fluxes and the Effects of Human Perturbations, Aquatic Geochemistry, 19, 477-500.
  • 37. Kendall C. & Grim E. (1990). Combustion Tube Method for Measurement of Nitrogen Isotope Ratios Using Calcium Oxide for Total Removal of Carbon Dioxide and Water. Analytical Chemistry, 62 (5), 526-529.
  • 38. Kendall C. (1998). Tracing nitrogen sources and cycling in catchments. Chapter 16, In: Kendall, C. and J.J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology, Elsevier, Amsterdam, 519-576.
  • 39. Kendall C., Elliott E. M. & Wankel S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems. Chapter 12, In: Michener R.H. and Lajtha K. (Eds.), Stable Isotopes in Ecology and Environmental Science, 2nd edition, Blackwell Publishing, 375- 449.
  • 40. Kim H., Kaown D., Mayer B., Lee J-Y., Hyun Y., Lee K-K. (2015). Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Science of the Total Environment, 533, 566–575.
  • 41. Knowles R. (1982). Denitrification. Microbiological Reviews, 46(1), 43–70.
  • 42. Kornexl B., Gehre M., Hoefling R. & Werner R. A. (1999). On-line δ18O measurements of organic and inorganic substances. Rapid Communication in Mass Spectrometry, 13, 1685-1693.
  • 43. Kotowska U. & Włodarczyk T. (2005). Przemiany mineralnych form azotu w glebie nawadnianej oczyszczonymi ściekami. Acta Agrophysica, 119.
  • 44. Leis A., Dietzel M., Saccon P., Stadler H., Saverino J. & Kaiser J. (2015). Use of isotopic and selected chemical tracers to investigate the origin and fate of nitrate in aquatic systems. ESIR XIII Book of Abstracts, 13-14.
  • 45. Lerman A, Mackenzie F. T. & Ver L. M. (2004). Coupling of the perturbed C–N–P cycles in industrial time. Aquatic Geochemistry, 10(1–2), 3–32.
  • 46. Leśniak P. M. (2006). Frakcjonowanie trwałych izotopów azotu w obiegu naturalnym — implikacje dla badań zanieczyszczeń wód podziemnych. Przegląd Geologiczny, 54 (7), 594 – 596.
  • 47. MacKown C.T., Brooks P.D. & Smith M.S. (1987). Diffusion of Nitrogen-15 Kjeldahl digests for isotope analysis. Soil Science Society of America Journal, 51, 87–90.
  • 48. Mariotti A., Germon J. C., Hubert P., Kaiser P., Letolle R. & Tardieux A. (1981). Experimental determination of nitrogen kinetic isotope fractionation: some principles, illustration for the denitrification and nitrification processes. Plant and Soil 62, 413–430.
  • 49. Martyniuk S. (2008). The importance of biological fixation of atmööospheric nitrogen in ecological agriculture. Journal of Research and Applications in Agricultural Engineering, vol. 53 (4), 9-14.
  • 50. Mayer B. (2005). Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In: Aggarwal P. K. (Ed.) Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Springer, Netherlands.
  • 51. Mayer B., Boyer E. W., Goodale Ch., Jaworski N., van Breemen N., Howarth R. W., Seitzinger S., Billen G., Lajtha K., Nadelhoffer K., van Dam D., Hetling L. J., Nosal M. & Paustian K. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry, 57/58, 171–197.
  • 52. McIlvin M. R. & Casciotti K. L. (2011). Technical Updates to the Bacterial Method for Nitrate Isotopic Analyses. Analytical Chemistry, 83 (5), 1850–1856.
  • 53. McIlvin M. R. &. Altabet M. A. (2005). Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater. Analytical Chemistry, 77 (17), 5589–5595.
  • 54. Mengis M., Walther U., Bernasconi S. M. & Wehrli B. (2001). Limitations of using δ18O for the source identification of nitrate in agricultural soils. Environmental Science &Technology, 35 (9), 1840-1844.
  • 55. Michalski G., Meixner T., Fenn M., Hernandez L., Sirulnik A., Allen E. & Thiemens M. (2004). Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using δ17O. Environmental Science and Technology, 38(7), 2175–2181.
  • 56. Michalski G., Savarino J., Böhlke J. K. & Thiemens M. (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Analytical Chemistry, 74, 4989 – 4993.
  • 57. Michalski G., Scott Z., Kabiling M. & Thiemens M.H. (2003). First measurements and modeling of ∆17O in atmospheric nitrate. Geophysical Research Letters, 30(16), 1-4.
  • 58. Nascimento T. S., Pereira R. O. L., Mello H. L. D. & Costa J. (2008). Methemoglobinemia: from diagnosis to treatment. Revista Brasileira de Anestesiologia, 58 (6), 651-664.
  • 59. Niżyńska A. (2003). Badania przebiegu procesu denitryfikacji na węglu aktywnym. Ochrona środowiska, 25(4), 75-78.
  • 60. O’Neill P. (1993). Environmental Chemistry, 2nd Ed. Chapman & Hall. London, [in Polish:] Chemia środowiska, PWN, Warszawa.
  • 61. Park S., Bae W., Chung J., Baek S-C. (2007). Empirical model of the pH dependence of the maximum specific nitrification rate. Process Biochemistry, 42, 1671–1676.
  • 62. Price D. (1998). Methemoglobinemia. In: Goldfrank’s Toxicological Emergencies (6th edition). Old Tappan, NJ: Appleton & Lange, 1507 – 1523.
  • 63. Prosser J. I. (2005). Nitrogen in soils. Nitrification. In: Hillel D. (Ed.). Encyclopedia of Soils in the Environment, Elsevier, 31-39.
  • 64. Revesz K. & Böhlke J. K. (2002). Comparison of 18O measurements in nitrate by different combustion techniques. Analytical Chemistry, 74, 5410-5413.
  • 65. Revesz K., Böhlke J. K. & Yoshinari, T. (1997). Determination of δ18O and δ15N in nitrate. Analytical Chemistry, 69, 4375–4380.
  • 66. Richard Y., Leprince A., Martin G., & Leblanc C. (1980). Denitrification of water for human consumption. Progress in Water Technology, 12, 173.
  • 67. Richardson D. J. (2001). Introduction: nitrate reduction and the nitrogen cycle. Cellular and Molecular Life Sciences, 58(2), 163-164.
  • 68. Rick Y. W. & Stuart T. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology, 4, 307-312.
  • 69. Rock L. & Mayer B. (2004). Isotopic assessment of sources of surface water nitrate within the Oldman River basin, Southern Alberta, Canada. Water, Air & Soil Pollution, 4, 542-562.
  • 70. Rosman K. J. R. & Taylor P. D. P. (1999). Table of isotopic masses and natural abundances, Pure and Applied Chemistry, 71, 1593–1607.
  • 71. Rożek S., Sady W., Kowalska I. & Smoleń S. (2004). The effect of the sulphates concentration in the nutrient solution on nitrate content and on some components of tomato fruits (Lycopersicon esculentum Mill). Horticulture and Vegetable Growing, 23 (2), 343-351.
  • 72. Russell K. M., Galloway J. M., Macko S. A., Moody J. L., Scudlark J. R. (1998). Sources of nitrogen in wet deposition to the chesapeake bay region. Atmospheric Environment, 32 (14/15): 2453 – 2465.
  • 73. Russow R. (1999). Determination of 15N in 15N-enriched nitrite and nitrate in aqueous samples by reaction continuous-flow quadrupole mass spectrometry. Rapid Communication in Mass Spectrometry, 13, 1334–1338.
  • 74. Schauer A. J., Kunasek S. A., Sofen E. D., Erbland J., Savarino, J., Johnson B. W., Amos H. M., Shaheen R., Abaunza M.,T. Jackson L., Thiemens M. H. & Alexander B. (2012). Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate. Rapid Communication in Mass Spectrometry, 26, 2151-2157.
  • 75. Schauer A., Kunasek S., Alexander B., Steig E., Sofen E., Bautista J., Vogel L., Hastings M. & Jarvis J. (2009). Reduced size limits for nitrate δ15N, Δ17O and sulfate Δ17O isotope measurements and first results from the WAIS Divide core – poster.
  • 76. Shrimali M. & Singh K.P. (2001). New methods of nitrate removal from water. Environmental Pollution, 112 (3), 351-359.
  • 77. Sigman D. M., Casciotti K. L., Andreani M., Barford C., Galanter M. & Böhlke J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73, 4145-4153.
  • 78. Sigman D.M., Altabet M.A., Michener R., McCorkle D.C., Fry B. & Holmes R.M. (1997). Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 57, 227–242.
  • 79. Silva S. R., Kendall C., Wilkison D. H., Ziegler A. C., Chang C. C. Y. & Avanzino R. J. (2000). A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios, Journal of Hydrology, 228, 22–36.
  • 80. Smil V. (1991). Population growth and nitrogen: An exploration of a critical existential link. Population and Development Review, 17, 569-601.
  • 81. Staszewski Z. (2012). Azot w glebie i jego wpływ na środowisko. Zeszyty naukowe – Inżynieria lądowa i wodna w kształtowaniu środowiska, 4, 50-58.
  • 82. Tanaka T. & Saino T. (2002). Modified Method for the Analysis of Nitrogen Isotopic Composition of Oceanic Nitrate at Low Concentration, Journal of Oceanography, 58, 539-546.
  • 83. Tiedje J. M. (1981). Use of nitrogen-13 and nitrogen-15 in studies on the dissimilatory fate of nitrate. In: Lyons J.M. et al. (Eds). Genetic engineering of symbiotic nitrogen fixation and conservation of fixed nitrogen Plenum Press, New York, 481-497.
  • 84. Torrentó C., Cama J., Urmeneta J., Otero N. & Soler A. (2010). Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chemical Geology, 278, 80-91.
  • 85. Unger M. & Heumann K. G. (1983). Determination of NO2 by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Physics, 48, 373-376.
  • 86. Urey H. C. (1947). The thermodynamic properties of isotopic substances. Journal of Chemical Society, London. 1947, 562–581.
  • 87. Velinsky D. J., Cifuentes L. A., Pennock J. R., Sharp H. & Fogel M. L. (1989). Determination of the isotope composition of NH4+-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry, 26, 351-361.
  • 88. Ver L. M. B., Mackenzie F. T. & Lerman A. (1999). Biogeochemical responses of the carbon cycle to natural and human perturbations; past, present, and future. American Journal of Science, 299 (7–9), 762-801.
  • 89. Vitousek P. M. & Howarth R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur? Bio-geochemistry 13(2), 87-115.
  • 90. Vitoušek P. M., Aber J. D., Howarth R. W., Likens G.E., Matson P.A., Schindler D. W., Schlesinger W. H. & Tilman D. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.
  • 91. Xu J., Xu X. & Verstraete W. (2000). Adaptation of E. coli cell method for micro-scale nitrate measurement with the Griess reaction in culture media. Journal of Microbiological Methods, 41, 23-33.
  • 92. Young J. (1992). Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris R (Eds).Biological nitrogen fixation. Chapman and Hall, New York, 43–86.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.