Preferences help
enabled [disable] Abstract
Number of results
2015 | 70 |
Article title

Dynamic effects and large – amplitude motion in Jacobi and Poincaré shape transitions in atomic nuclei

Title variants
Languages of publication
The Jacobi and Poincaré shape transitions are very promising way to investigate the shape of the nucleus. The presented here quasi-phenomenological approach allows to estimate the experimental conditions which are necessary to observe these phenomena. The static energy minimum gives the spin ranges and the fissility of atomic nuclei soft for the shape transitions and available experimentally. Dynamical effects taken into account through the solving collective Hamiltonian for zero-point vibration estimation, changes the spin rages for the shape transitions. The static deformation of the nucleus constrained by the minimum of energy for given spin has been enhanced to dynamical nuclear shapes permitted by the zero point energy. The large amplitude vibrations around the static deformation gives the ensemble of nuclear shapes possible to be observed.
Physical description
29 - 04 - 2016
  • 1. Jacobi C.G.J., Vorlesungen über Dynamik; Ed. A. Clebsch, printed by G. Reimer, Berlin 1884.
  • 2. Poincaré H.,Sur l’equilibre d’une masse fluide anime d’un mouvement de rotation, Acta Math. 7, 259 (1885).
  • 3. Beringer R. and Knox W.J., Liquid-Drop Nuclear Model with High Angular Momentum, Phys. Rev. 121, 1195 (1961).
  • 4. Möller P., Nix J.R., Nuclear mass formula with a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential , Nucl. Phys. A 361, 117 (1981); Atomic Masses and Nuclear Ground-State Deformations Calculated with a New Macroscopic Model, At. Data Nucl. Data Tables 39 (1988) 213
  • 5. Möller P., Madland D.G., Sierk A.J., Iwamoto A., Nuclear Fission Modes and Fragment Mass Asymmetries in a Five-Dimensional Deformation Space, Nature, London 409 (2001) 785
  • 6. Möller P., Sierk A.J., Bengtsson R., Sagawa H., Ichikawa T., Global Calculation of Nuclear Shape Isomers, Phys. Rev. Lett. 103 (2009) 212501
  • 7. Aberg S., Flocard H., Nazarewicz W., Nuclear Shapes in Mean Field Theory, Ann. Rep. Nucl. Part. Sci. 40 (1990) 439
  • 8. Egido J.L., Robledo L.M., Chasman R.R., Nuclear Shapes in 176W with Density Dependent Forces: From ground state to fission, Phys. Lett. B 393 (1997) 13
  • 9. Berger J.F., Girod M., Gogny D., Constrained hartree-fock and beyond, Nucl. Phys.A 502 (1989) 82c
  • 10. Pomorski K., Dudek J.,Nuclear liquid-drop model and surface-curvature effects, Phys. Rev. C 67 (2003)044316
  • 11. Dudek J., Pomorski K., Schunck N., Dubray N., Hyperdeformed and megadeformed nuclei: Lessons from the slow progress and emerging new strategies, Eur. Phys. J. A 20 (2004) 165
  • 12. Maj A. et al., Evidence for the Jacobi shape transition in hot 46Ti Nucl. Phys. A 731, 319 (2004).
  • 13. Myers W.D., Swiatecki W.J., Nuclear Masses and Deformations Nucl. Phys. A 81 (1966) 1
  • 14. Kicinska-Habior M., Snover K.A, Behr J.A., Gossett C.A., Alhassid Y., Whelan N., Phys. Lett. B 308, 225 (1993). Search for a Phase Transition in the Nuclear Shape at Finite Temperature and Rapid Rotation
  • 15. Kmiecik M. et al., Probing nuclear shapes close to the fission limit with the giant dipole resonance in Rn216, Phys. Rev. C 70, 064317 (2004).
  • 16. Maj A. et al., Search for Exotic Shapes of Hot Nuclei at Critical Angular Momenta, Nucl. Phys. A 687, 192 (2001).
  • 17. Kmiecik M. et al., Strong Deformation Effects in Hot Rotating 46Ti, Acta Phys. Polon. B 38, 1437 (2007).
  • 18. Kmiecik M. et al., GDR feeding of the highly-deformed band in 42Ca, Acta Phys. Polon. B 36, 1169 (2005).
  • 19. CiemaŃa M. et al., Search for Jacobi Shape Transition in Hot Rotating 88Mo Nuclei Through Giant Dipole Resonance Decay Acta Phys. Polon. B 42, 633 (2011).
  • 20. Maj A., Mazurek K., Dudek J., Kmiecik M. and Rouvel D., Shape evolution at high spins and temperatures: nuclear Jacobi and Poincare transitions, Int. J. Mod. Phys. E 19, 532 (2010).
  • 21. Mazurek K., Dudek J., Kmiecik M., Maj A., Wieleczko J. P. and Rouvel D.,Poincare Shape Transitions in Hot Rotating Nuclei Acta Phys. Polon. B 42, 471 (2011).
  • 22. Ivanyuk F. A. and Pomorski K., On the Poincare instability of a rotating liquid drop Phys. Scr. T 154, 014021 (2013).
  • 23. Mazurek K., Dudek J., Maj A., Rouvel D. Nuclear Jacobi and Poincaré transitions at high spins and temperatures: Account of dynamic effects and large-amplitude motion Phys. Rev. C 91 (2015) 034301
  • 24. Myers W. D., Swiatecki W. J., Nuclear Properties According to the Thomas-Fermi Model Nucl. Phys. A 601 (1996) 141
  • 25. Fan T. S., Jing K. X., Phair L., Tso K., McMahan M., Hanold K., Wozniak G. J., Moretto L. G., Excitation Functions and Mass Asymmetric Fission Barriers for Compound Nuclei 70, 76Se, Nucl. Phys. A 679 (2000) 121
  • 26. Delis D.N., et al, Mass Asymmetric Fission Barriers for 75Br, Nucl. Phys. A 534 (1991) 403
  • 27. Jing K.X., et al, Transition State Rates and Mass Asymmetric Fission Barriers of Compound Nuclei 90, 94, 98Mo, Nucl. Phys. A 645 (1999) 203
  • 28. Moretto L.G., Thompson S.G., Routti J., Gatti R.C., Influence of Shells and Pairing on the Fission Probabilities of Nuclei Below Radium, Phys. Lett. B 38 (1972) 471
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.