PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 70 |
Article title

Why are variations in bromine isotope compositions in the Earth's history larger than chlorine isotope compositions?

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we discuss the marked discrepancy in global chlorine and bromine isotope variations. While, based on experimentally and theoretically determined fractionation factors, it is expected that bromine isotope variations should be, depending on the process, 2 to 7 times less than chlorine isotope variations it is observed that in formation brines the isotope variations of bromine are at least of the same size as chlorine isotope variations, and regularly even larger. In this paper we argue that this is caused by the fact that oxidation-reduction processes play a more important role in bromine isotope geochemistry than in chlorine isotope geochemistry. Due to the fact that the bromide ion is more easily to oxidise than the chloride ion Rayleigh effects can cause the observed larger variations in bromine isotope geochemistry. In this paper we propose that biochemical reactions (oxidation of bromide ions to methyl bromide) may be the major cause for this effect. Although we do not yet understand the full processes that take place we show that oxidation-reduction processes must be the main effect to explain the differences between the two isotope systems and propose that more research is developed to understand how the processes cause the observed variations.
Year
Volume
70
Physical description
Dates
published
2015
online
29 - 04 - 2016
Contributors
References
  • 1. H.G.M. Eggenkamp and M.L. Coleman, 7th Annual Goldschmidt Conference, Tucson, Az. p. 213 (1997)
  • 2. H.G.M. Eggenkamp and M.L. Coleman, Geochim. Cosmochim. Acta, 73, 3539 (2009)
  • 3. H.G.M. Eggenkamp and M.L. Coleman, Chem. Geol. 167, 393 (2000)
  • 4. O. Shouakar-Stash, S.V. Alexeev, S.K. Frape, L.P. Alexeeva and R.J. Drimmie, Appl. Geochem. 22, 589 (2007)
  • 5. R.L. Stotler, S.K. Frape and O. Shouakar-Stash, Chem. Geol., 274, 38 (2010)
  • 6. T. Boschetti, L. Toscani, O. Shouakar-Stash, P. Iacumin, G. Venturelli, C. Mucchino and S.K. Frape, Aquat. Geochem., 17, 71 (2011)
  • 7. R. Bagheri, A. Nadri, E. Raeisi, H.G.M. Eggenkamp, G.A. Kazemi and A. Montaseri, Chem. Geol., 384, 62-75 (2014)
  • 8. H. Eggenkamp, The geochemistry of stable chlorine and bromine isotopes, Springer-Verlag (2014)
  • 9. H.G.M. Eggenkamp, EUG, 8th Congress. Terra Nova, 7, Supp. 1, 331, Avail.: http://www.eggenkamp.info/personal/Eggenkamp_Poster_EUG_1995.pdf (1995)
  • 10. O. Shouakar-Stash, Evaluation of stable chlorine and bromine isotopes in sedimentary formation fluids. PhD Thesis University of Waterloo (2008)
  • 11. C.J. Eastoe, T.M. Peryt, O.Y. Petrychenko and Geisler-Cussey, Appl. Geochem., 22, 575-588 (2007)
  • 12. H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans, Princeton Univ. Press (1984)
  • 13. S.R. Taylor and S.M. McLennan, Rev. Geophys., 33, 241 (1995)
  • 14. A.F. Morozov, B.N. Khakhaev, O.V. Petrov, V.I. Gorbachev, G.V. Tarkhanov, L.D. Tsvetkov, YuM Erinchek, A.M. Akhmedov, V.A. Krupenik and K.Yu. Sveshnikova, Dokl. Earth. Sci., 435, 1483 (2010)
  • 15. L.P. Knauth, Nature 395, 554 (1998)
  • 16. W.W. Hay, A Migdisov, A.N. Balukhovsky, C.N. Wold, S. Flögel and E. Söding, Pal. Pal. Pal., 240, 3 (2006)
  • 17. L.P. Knauth, Pal. Pal. Pal., 219, 53 (2005)
  • 18. L.A. Hardie, Geology, 24, 279 (1996)
  • 19. H.D. Holland, Am. J. Sci., 305, 220 (2005)
  • 20. T.K. Lowenstein, L.A. Hardie, M.N. Timofeeff and R.V. Demicco, Geology, 31, 857 (2003)
  • 21. M.G. Siemann, Terra Nova, 15, 243 (2003)
  • 22. A.J. Balard, Annal. Chim. Phys. 2me series, 32, 337 (1826)
  • 23. C. Löwich, Mag. Pharmacie, 21, 31 (1827)
  • 24. M. Dechan, J. Chem. Soc., 49, 682 (1886)
  • 25. C. Friedheim and R.J. Mayer, Z. Anorg. Chemie, 1, 407 (1892)
  • 26. G.W. Gribble, Acc. Chem. Res., 31, 141 (1998)
  • 27. G.W. Gribble, Chem. Soc. Rev., 28, 335 (1999)
  • 28. E. Blei, M.R. Heal and K.V. Heal, Biogeosci., 7, 3657 (2010)
  • 29. A.N. Mayeno, A.J. Curran, R.L. Roberts and C.S. Foote, J. Biol. Chem., 264, 5660 (1989)
  • 30. C. Aeppli, D. Bastviken, P. Andersson and Ö. Gustafsson, Environ. Sci. Techn., 47, 790 (2013)
  • 31. C.M. Reddy, L. Xu, N.J. Drenzek, N.C. Sturchio, L.J. Heraty, C. Kimblin and A. Butler, J. Amer. Chem. Soc., 124, 14526 (2002)
  • 32. A. Horst, P. Andersson, B.J. Thornton, H. Holmstrand, A. Wishkerman, F. Keppler and Ö. Gustafsson, Geochim. Cosmochim. Acta, 125, 186 (2014)
  • 33. Y. Zakon, L. Halicz and F. Gelman, Environ. Sci. Technol., 47, 14147 (2013)
  • 34. E.A. Schauble, G.R. Rossman and H.P Taylor, Geochim. Cosmochim. Acta, 67, 3267 (2003)
  • 35. H.C. Urey, J. Chem. Soc., 1947, 562 (1947)
  • 36. M. Czarnacki and S. Halas, Isot Env. Health Stud., 48, 55 (2012)
  • 37. L.J. Carpenter and S. Reimann (Lead Authors), J.B. Burkholder, C. Clerbaux, B.D. Hall, R. Hossaini, J.C. Laube, and S.A. Yvon-Lewis, Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland (2014)
  • 38. J.G. Schilling, C.K. Unni and M.L. Bender, Nature 273, 631 (1978)
  • 39. A.T. Brown, C.M. Volk, M.R. Schoeberl, C.D. Boone and P.F. Bernath, Atmos Chem Phys 13, 6921 (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aaa_2015_70_185
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.