PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 74 | 2 |
Article title

Visual presentation of the correlation between solid (mineral) surface free energy and its wettability by flotation tests using the Hallimond tube

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents earlier published results, as well some new ones, of the flotation tests carried out with the help of a Hallimond tube for several different apolar and polar minerals. This is to depict the relationship between mineral surface free energy and its flotability. Although the thermodynamic condition for the efficient flotation of a mineral is well known, this paper prompts the not-acquainted readers to get familiar with the fundamental thermodynamic relationships involved in the wetting processes and to learn about usefulness of the simple flotation experiments for this purpose. This relationship between the flotation recovery of a mineral and the work of water spreading on the mineral surface is clearly illustrated. The work of spreading is the difference between the work of adhesion and the work of water cohesion. This work has to be negative to carry out an efficient flotation of a mineral sample. Thus, the purpose of this paper is to show that the simple Hallimond tube is a very useful tool for studying solid (mineral) surface hydrophobic/hydrophilic character under the kinetic conditions.
Year
Volume
74
Issue
2
Physical description
Dates
published
2019
online
2020-07-15
Contributors
References
  • [1] A.F. Hallimond, Mining Magazine, 70, 87, (1944).
  • [2] E. Chibowski, L. Hołysz, J. Colloid Inter. Sci., 68, 15, (1986).
  • [3] J. Drzymała, T. Chmielewski, K. L. Wolters, D. H. Birlingmair, T.D. Wheelock, Trans. IMM, Sec. C, 101, C17, (1992).
  • [4] L. Hołysz, E. Chibowski, Langmuir, 8(1), 303, (1992).
  • [5] J. Drzymała, Miner. Eng., 12, 329, (1999).
  • [6] E. Chibowski, L. Hołysz, Annales Universitatis Mariae Curie-Sklodowska Lublin - Polonia, LIV/LV8, SECTIO AA, 117, (2000).
  • [7] T. Sreenivas, N.P.H. Padmanabhan, Colloids Surf. A, 205, 47, (2002).
  • [8] P. Somasundaran, L. Zhang, J. Petro. Sci. Eng., 52, 198, (2006).
  • [9] A. Ansari, M. Pawlik, Miner. Eng., 20, 609, (2007).
  • [10] G. Bulut, S. Atak, E. Tuncer, Canadian Metallurgical Quarterly 47, 119, (2008).
  • [11] D. Szyszka, E. Flapiak, J. Drzymała, Physicochem. Probl. Miner. Process., 42, 85, (2008).
  • [12] D.W. Fuerstenau, Mining, Metallurgy & Exploration 30, 1, (2013).
  • [13] P. B. Kowalczuk, Int. J. Miner. Process., 140, 66, (2015).
  • [14] J. Drzymała, A. Swebodzińska, M. Duchnowska, A. Bakalarz, A. Łuszczkiewicz, P. B. Kowalczuk, MEC 2016, E3S Web of Conferences, 8, 01031, (2016).
  • [15] J. W. Drelich, Physicochem. Probl. Miner. Process., 54(1), 10, (2018).
  • [16] M.C. Fuerstenau, G.J. Jameson, R.H. Yoon, Froth Flotation: a Century of Innovation, SME, Littleton, 2007.
  • [17] J. Drzymała, Adv. Colloid Interface Sci., 50, 143, (1994).
  • [18] J.S. Laskowski, Canadial Metallurgical Quarterly, 46(3), 251, (2007).
  • [19] J.W. Drelich, Contact angles measured at mineral surfaces covered with adsorbed collector layer. Miner. Metal. Proc., 18(1), 31, (2001).
  • [20] A. Bastrzyk, I. Polowczyk, E. Szeląg, Z. Sadowski, Physicochem. Probl. Miner. Process., 42, 261, (2008).
  • [21] A. Szymańska, Z. Sadowski, Adsorption, 16, 233, (2010).
  • [22] A.M. Didyk, Z. Sadowski, Physicochem. Probl. Miner. Process., 48(2), 607, (2012).
  • [23] E. Potapova, X. Yang, M. Grahn, A. Colloids Surf. A, 386, 79, (2011).
  • [24] G. Liu, X. Yang, H. Zhong, Adv. Colloid Interface Sci., 246, 181, (2017).
  • [25] Y. Xing, X. Gui, F. Karakas, Y. Cao, Minerals, 7(11), 223, (2017).
  • [26] M.M. Fawzy, Physicochem. Probl. Miner. Process., 54(1), 10, (2018).
  • [27] Z. Liu, Y. Liao, M. An, Q. Lai, L. Ma, Y. Qiu, Physicochem. Probl. Miner. Process., 54(3), 677, (2018).
  • [28] A. Pattanik, R. Venugopal, Colloid Interface Sci. Communications, 25, 41, (2018).
  • [29] J.S. Laskowski, Miner. Process. Extractive Metall. Rev., 5(1-4), 25, (1989).
  • [30] M. Rudolph, R. Hartman, Colloids Surf. A, 513, 380, (2017).
  • [31] J. Drzymała, Inter. J. Miner. Process., 42(3-4), 139, (1994).
  • [32] J. Drzymała, Inter. J. Miner. Process., 42, 153, (1994). Erratum, Inter. J. Miner. Process. 43, 135, (1995).
  • [33] J. Drzymała, Inter. J. Miner. Process., 55(3), 203, (1999).
  • [34] L.K. Koopal, T. Goloub, A. de Keizer, M. P. Sidorova, Colloids Surf. A, 151, 15, (1999).
  • [35] J. Drzymała, J. Lekki, J. Colloid Interface Sci., 130, 205, (1989).
  • [36] M. Watanabe, P. B. Kowalczuk, J. Drzymała, Physicochem. Probl. Miner. Process., 46, 13, (2011).
  • [37] P.B. Kowalczuk, O. Sahbaz, J. Drzymała, Miner. Eng., 24, 766, (2011).
  • [38] P.B. Kowalczuk, J. Drzymała, I&EC Research, 50, 4207, (2011).
  • [39] E. Chibowski, L. Hołysz, P. Staszczuk, Polish J. Chem., 59, 1167, (1985).
  • [40] E. Chibowski, L. Hołysz, J. Colloid Inter. Sci., 127(2), 377, (1989).
  • [41] E. Chibowski, L. Hołysz, Fuel, 8(1), 1280, (1989).
  • [42] E. Chibowski, L. Hołysz, J. Adhes. Sci. Technol., 3(8), 575, (1989).
  • [43] E. Chibowski, L. Hołysz, J. Mat. Sci., 27, 5221, (1992).
  • [44] E. Chibowski, L. Hołysz, Prog. Colloid & Polym. Sci., 89, 173, (1992).
  • [45] L. Hołysz, Polish J. Chem., 68, 2699, (1994).
  • [46] L. Hołysz, Fuel, 75(6), 737, (1996).
  • [47] F. González-Caballero, E. Chibowski, L. Hołysz, J.M. Bruque, Colloids Surf., 35(1), 65, (1989).
  • [48] S. Calgaroto, A. Azevedo, J. Rubio, Inter. J. Miner. Process., 137, 64, (2015).
  • [49] S.R. Rao, J. Leja, Surface Chemistry of Froth Flotation, 2 nd Ed.; Kluwer Academic/Plenum Publisher: New York, Vol. 2, 2004.
  • [50] M. Humeres, N.S. Dabacher, T. Wagner, G. Gonzalez, Sep. Sci. Technol., 27(7), 1501, (1993).
  • [51] X. You, L. Lin Li, X. Lyu, Physicochem. Probl. Miner. Process., 53(1), 333, (2017).
  • [52] J. Laskowski, in: Separation Technologies for Minerals, Coal, and Earth resources. C.A. Young and G.H. Lutterell Eds. SME. USA, p. 7, 2012.
  • [53] A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 5th ed.; New York: Wiley & Sons, 1997.
  • [54] A. Duprè, Gauthier-Villars, Paris, p. 368, (1869).
  • [55] T. Young, Philosophical Transactions of the Royal Society of London, 95, 65, (1804).
  • [56] D.K. Owens, R. Wendt, J. Appl. Polym. Sci., 13, 1741, (1969).
  • [57] C.J. van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev., 88(6), 927, (1988).
  • [58] B. Jańczuk, W. Wójcik, T. Białopiotrowicz, Croatica Chemica Acta, 61(1), 51, (1988).
  • [59] B. Jańczuk, W. Wójcik, A. Zdziennicka, Powder Technol., 76(3), 233, (1993).
  • [60] W. Wójcik, T. Białopiotrowicz, B. Jańczuk, Fuel, 67(5), 688, (1988).
  • [61] B. Jańczuk, E. Chibowski, T. Białopiotrowicz, L. Hołysz, A. Kliszcz, Clay Clay Miner., 38(1), 53, (1990).
  • [62] C. Karagüzel, M.F. Can, E. Sönmez, M.S. Celik, J. Colloid Interf. Sci., 285(1), 192, (2005).
  • [63] W. Wójcik, T. Białopiotrowicz, B. Jańczuk, Fuel, 69(5), 207, (1990).
  • [64] T.A. Solov’eva, A.N. Muklakova, Fuel Energy Abstracts, 36(4), 246, (1995).
  • [65] B. Jańczuk, Przem. Chem., 72(3), 103, (1993).
  • [66] B. Jańczuk, W. Wójcik, T. Białopiotrowicz, Croatica Chemica Acta, 61(1), 51, (1988).
  • [67] B. Jańczuk, Fuel, 65(1), 113, (1986).
  • [68] M. Kecir, A. Kecir, J. Polish Miner. Eng. Soc., 269, (2016).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aa_2019_74_2_1-24
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.