Journal
Article title
Authors
Content
Full texts:
Title variants
Languages of publication
Abstracts
For the last two decades the CMK-3-type carbon was the subject of study by researchers from all over the world for wide range of applications: adsorptive, catalytic, magnetic and electric. Changing of modification strategies resulted in obtaining carbonaceous materials with interesting properties. In this review the synthesis, properties and applications of the CMK-3-type nanocarbon are described.
Year
Volume
Issue
Physical description
Dates
published
2018
online
2019-11-06
Contributors
author
author
References
- [1] J. Rouquerol et al., Pure Appl. Chem., 66, 1739, (1994).
- [2] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B, 103, 7743, (1999).
- [3] S. Jun et al., J. Am. Chem. Soc., 122, 10712, (2000).
- [4] H. Chen, T. Yan, F. Jiang, J. Taiwan Inst. Chem. Eng., 45, 1842, (2014).
- [5] Z. Ezzeddine et al., J. Mol. Liq., 223, 763, (2016).
- [6] J. Xu et al., Nanotechnology, 28, 485701, (2017).
- [7] H. Albuquerque et al., Polyhedron, 79, 315, (2014).
- [8] A. R. Silva et al., Catal. Sci. Technol., 3, 659, (2013).
- [9] T. Zhang et al., Carbon, 123, 717, (2017).
- [10]D. Ni et al., J. Power Sources, 374, 166, (2018).
- [11]F. Nitze et al., J. Power Sources, 317, 112, (2016).
- [12]J. Hu et al., Carbon, 93, 903, (2015).
- [13]V. C. Almeida et al., J. Mater. Chem. A, 2, 15181, (2014).
- [14]D. Zhang, L. Lei, Y. Shang, J. Mater. Sci. Mater. Electron., 27, 3531, (2016).
- [15]M. Regiart et al., Sens. Actuators B Chem., 232, 765, (2016).
- [16]D. Xiang et al., The Analyst, 140, 644, (2015).
- [17]S. Zhu et al., Mater. Chem. Phys., 126, 357, (2011).
- [18]M. Ulfa, D. Prasetyoko, J. Phys. Conf. Ser., 1153, 012065, (2019).
- [19]M. Enterría, J. L. Figueiredo, Carbon, 108, 79, (2016).
- [20]M. Oszust, M. Barczak, A. Dąbrowski, in: Adsorbents and catalyst - selected technologies and environment (J. Ryczkowski, Ed.), Vol. 3., Uniwersytet Rzeszowski, Rzeszów, p. 53, 2012.
- [21]P. F. Fulvio, S. Pikus, M. Jaroniec, J. Mater. Chem., 15, 5049, (2005).
- [22]D. Zhao et al., J. Am. Chem. Soc., 120, 6024, (1998).
- [23]S. K. Jana et al., Microporous Mesoporous Mater., 68, 133, (2004).
- [24]Y. Zhai et al., J. Porous Mater., 15, 601, (2008).
- [25]K. P. Gierszal et al., J. Phys. Chem. B, 109, 23263, (2005).
- [26]J. Kim et al., Carbon, 75, 95, (2014).
- [27]D. Nettelroth et al., Phys. Status Solidi A, 213, 1395, (2016).
- [28]A. Węgrzyniak et al., J. Porous Mater., 25, 687, (2018).
- [29]C. Weinberger et al., The Sci. Function of Nanomater.: From Synthesis to Appl., 1183, 3, (2014).
- [30]T.-W. Kim, I.-S. Park, R. Ryoo, Angew. Chem. Int. Ed., 42, 4375, (2003).
- [31]P. Niebrzydowska et al., Carbon, 64, 252, (2013).
- [32]K. Wu, Q. Liu, Appl. Surf. Sci., 379, 132, (2016).
- [33]Y. Wang et al., J. Mater. Chem., 21, 14420, (2011).
- [34]X. Wang et al., J. Mater. Sci., 45, 2958, (2010).
- [35]M. Baikousi et al., J. Phys. Chem. C, 117, 16961, (2013).
- [36]B. Zhang et al., Mater. Lett., 189, 317,(2017).
- [37]A. Sánchez-Sánchez et al., Carbon, 62, 193, (2013).
- [38]Y. Xia, R. Mokaya, Adv. Mater., 16, 1553, (2004).
- [39]A. B. Fuertes, D. M. Nevskaia, J. Mater. Chem., 13, 1843, (2003).
- [40]A.-H. Lu et al., Microporous Mesoporous Mater., 95, 187, (2006).
- [41]D. K. Singh et al., Angew. Chem. Int. Ed., 55, 2032, (2016).
- [42]A. T. Mohd Din, M. A. Ahmad, B. H. Hameed, Chem. Eng. J., 260, 730, (2015).
- [43]V. Ravat, I. Nongwe, N. J. Coville, Microporous Mesoporous Mater., 225, 224, (2016).
- [44]W. Shou et al., J. Appl. Polym. Sci., 133, 43426, (2016).
- [45]M. Sevilla et al., RSC Adv., 3, 9904, (2013).
- [46]R. Wang et al., IOP Conf. Ser. Mater. Sci. Eng., 207, 012012, (2017).
- [47]J. Hou et al., Chemosphere, 197, 485,(2018).
- [48]S. Said, New J. Chem., 42, 14517, (2018).
- [49]S. Giraudet, Z. Zhu, Carbon, 49, 398, (2011).
- [50]X. Gao et al., Adv. Funct. Mater., 26, 6649, (2016).
- [51]Á. Sánchez-Sánchez et al., Carbon, 94, 152, (2015).
- [52]H. Chen et al., Electrochimica Acta, 214, 231, (2016).
- [53]T. Jiang et al., Appl. Catal. B Environ., 189, 1, (2016).
- [54]D. Zhang et al., J. Mater. Chem. A, 1, 7584, (2013).
- [55]B. Karimi et al., ACS Appl. Mater. Interfaces, 7, 19050, (2015).
- [56]Y. Chang et al., Carbon, 87, 424, (2015).
- [57]R. Goyal et al., J. Mater. Chem. A, 4, 18559, (2016).
- [58]S.-H. Liu et al., J. Mater. Chem., 21, 12489, (2011).
- [59]F. Kerdi et al., Appl. Catal. Gen., 506, 206, (2015).
- [60]P. F. Fulvio et al., Eur. J. Inorg. Chem., 2009, 605, (2009).
- [61]L. Tang et al., Chem. Eng. J., 239, 114, (2014).
- [62]G. Zeng et al., Chem. Eng. J., 259, 153, (2015).
- [63]W. Guo et al., J. Ind. Eng. Chem., 21, 340, (2015).
- [64]Y. Zhou et al., J. Hazard. Mater., 333, 80, (2017).
- [65]S. Zhang et al., Chem. Eng. J., 314, 19, (2017).
- [66]J. Lang et al., J. Power Sources, 204, 220, (2012).
- [67]L. Zhang et al., Appl. Surf. Sci., 440, 821, (2018).
- [68]H. Li et al., Microporous Mesoporous Mater., 96, 357, (2006).
- [69]P. A. Bazuła et al., Microporous Mesoporous Mater., 108, 266, (2008).
- [70]R. Moreno-Tovar, E. Terrés, J. R. Rangel-Mendez, Appl. Surf. Sci., 303, 373, (2014).
- [71]P. Janus et al., Catal. Today, 235, 201, (2014).
- [72]X. Dong et al., Mater. Lett., 65, 2486, (2011).
- [73]M. Lashgari, H. K. Lee, J. Colloid Interface Sci., 481, 39, (2016).
- [74]A. Vinu et al., J. Mater. Chem., 17, 1819, (2007).
- [75]R. Chakravarti et al., ChemCatChem, 6, 2872, (2014).
- [76]M. Anbia, R. Dehghan, J. Environ. Sci., 26, 1541, (2014).
- [77]J. He et al., Microporous Mesoporous Mater., 121, 173, (2009).
- [78]M. Leżańska et al., Mater. Chem. Phys., 149, 539, (2015).
- [79]C. He, X. Hu, Adsorption, 18, 337, (2012).
- [80]H. Hamad et al., Mater. Chem. Phys., 178, 57, (2016).
- [81]K. Michalak-Zwierz et al., Adsorpt. Sci. Technol., 33, 663, (2015).
- [82]M. Barczak et al., Microporous Mesoporous Mater., 211, 162, (2015).
- [83]Y.-D. Zou et al., J. Radioanal. Nucl. Chem., 306, 515, (2015).
- [84]R. Xing, Z. Fei, J. Chin. Chem. Soc., 61, 1093, (2014).
- [85]M. Anbia, A. H. Davijani, Chem. Eng. J., 223, 899, (2013).
- [86]M. Anbia, S. Salehi, J. Polym. Res., 23, 124, (2016).
- [87]H. Zhou et al., Nanoscale, 5, 12502, (2013).
- [88]Y. Song et al., Chem. Mater., 28, 5013, (2016).
- [89]X. Wang et al., Microporous Mesoporous Mater., 221, 58, (2016).
- [90]D. Giasafaki et al., Carbon, 98, 1, (2016).
- [91]D. Kim et al., Eur. J. Inorg. Chem., 2016, 3469, (2016).
- [92]L. Calvillo et al., J. Power Sources, 169, 59, (2007).
- [93]X. Ju et al., Microporous Mesoporous Mater., 230, 188, (2016).
- [94]G. Zolfaghari et al., J. Hazard. Mater., 192, 10, (2011).
- [95]F. Lai et al., Adv. Funct. Mater., 28, 1801298, (2018).
- [96]M. Baikousi et al., Langmuir, 28, 3918, (2012).
- [97]S. Liu, W. Lei, Y. Liu, Chem. Eng. J., 356, 10, (2019).
- [98]W.-J. Jiang et al., Sep. Sci. Technol., 48, 968, (2013).
- [99]J. Cheng et al., Microporous Mesoporous Mater., 212, 9, (2015).
- [100]Q. Gao et al., J. Porous Mater., 20, 983, (2013).
- [101]Y. Shi, X. Zhang, G. Liu, Fuel, 158, 565, (2015).
- [102]Z. He et al., J. Mater. Sci., 52, 2422, (2017).
- [103]H. Darmstadt et al., Carbon, 40, 2673, (2002).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aa_2018_73_1_11-30