Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 72 | 2 |

Article title

A review on physicochemical measurements by headspace gas chromatography. Studies of vapour-liquid equilibria.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Headspace gas chromatography (HS-GC) is a powerful technique for the analysis of volatile compounds. It has found broad applications for quantitative and qualitative analyses of various samples as well as for physicochemical measurements. This paper briefly reviews the basic physicochemical applications of HS-GC including vapour pressure measurements and studies of vapour-liquid equilibria in multicomponent systems. A special attention is paid to methodological aspects of these measurements. The advantages and limitations of HS-GC in this field as well as typical applications are also pointed out.

Year

Volume

72

Issue

2

Physical description

Dates

published
2017
online
2018-09-10

Contributors

References

  • [1] B. Kolb and L. S. Ettre, Static Headspace-Gas Chromatography: Theory and Practice, 2nd ed., Wiley-Interscience, Hoboken, 2006.
  • [2] B. V. Ioffe and A. G. Vitenberg, Head-Space Analysis and Related Methods in Gas Chromatography, Wiley-Interscience, New York, 1984.
  • [3] H. Hachenberg and A. P. Schmidt, Gas Chromatographic Headspace Analysis, Heyden, London, 1977.
  • [4] A. C. Soria, M. J. García-Sarrió, and M. L. Sanz, Trends Anal. Chem. 71, 85 (2015).
  • [5] J. Y. Zhu and X. S. Chai, Curr. Anal. Chem. 1, 79 (2005).
  • [6] D. C. Leggett, J. Chromatogr. 133, 83 (1977).
  • [7] K. Schoene and J. Steinhanses, Z. Anal. Chem. 309, 198 (1981).
  • [8] K. Schoene, W. Böhmer, and J. Steinhanses, Z. Anal. Chem. 319, 903 (1984).
  • [9] J. E. Woodrow and J. N. Seiber, J. Chromatogr. 455, 53 (1988).
  • [10] J. E. Woodrow, Energy Fuels 17, 216 (2003).
  • [11] J. C. Oxley, J. L. Smith, K. Shinde, and J. Moran, Propellants, Explos. Pyrotech. 30, 127 (2005).
  • [12] J. C. Oxley, J. L. Smith, W. Luo, and J. Brady, Propellants, Explos. Pyrotech. 34, 539 (2009).
  • [13] B. Kolb, J. Chromatogr. 112, 287 (1975).
  • [14] P. Luis, C. Wouters, B. Van der Bruggen, and S. I. Sandler, J. Chromatogr. A 1302, 111 (2013).
  • [15] P. Luis, C. Wouters, N. Sweygers, C. Creemers, and B. Van Der Bruggen, J. Chem. Thermodyn. 49, 128 (2012).
  • [16] J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 42, 517 (1997).
  • [17] J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 43, 1009 (1998).
  • [18] M. T. Sanz and J. Gmehling, Fluid Phase Equilib. 267, 158 (2008).
  • [19] J.-Y. Lee, I.-C. Hwang, S.-J. Park, and S.-J. In, J. Chem. Eng. Data 55, 864 (2010).
  • [20] I.-C. Hwang, M.-Y. Jo, H.-Y. Kwak, S.-J. Park, and K.-J. Han, J. Chem. Eng. Data 52, 2503 (2007).
  • [21] E. J. González, J. Palomar, P. Navarro, M. Larriba, J. García, and F. Rodríguez, J. Mol. Liq. 250, 9 (2018).
  • [22] B. Mokhtarani and J. Gmehling, J. Chem. Thermodyn. 42, 1036 (2010).
  • [23] I.-C. Hwang, S.-J. Park, and K.-J. Han, Fluid Phase Equilib. 303, 150 (2011).
  • [24] H. Matsuda, K. Tochigi, V. Liebert, and J. Gmehling, Fluid Phase Equilib. 307, 197 (2011).
  • [25] F. A. Banat, F. A. Abu Al-rub, and J. Simandl, Chem. Eng. Technol. 22, 761 (1999).
  • [26] F. A. Abu Al-Rub, F. A. Banat, and J. Simandl, Chem. Eng. J. 74, 205 (1999).
  • [27] F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. 41, 793 (2002).
  • [28] F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. Process Intensif. 42, 917 (2003).
  • [29] H. Takamatsu and S. Ohe, J. Chem. Eng. Data 48, 277 (2003).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_17951_aa_2017_72_2_37-50
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.