PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 72 | 2 |
Article title

A review on physicochemical measurements by headspace gas chromatography. Studies of vapour-liquid equilibria.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Headspace gas chromatography (HS-GC) is a powerful technique for the analysis of volatile compounds. It has found broad applications for quantitative and qualitative analyses of various samples as well as for physicochemical measurements. This paper briefly reviews the basic physicochemical applications of HS-GC including vapour pressure measurements and studies of vapour-liquid equilibria in multicomponent systems. A special attention is paid to methodological aspects of these measurements. The advantages and limitations of HS-GC in this field as well as typical applications are also pointed out.
Year
Volume
72
Issue
2
Physical description
Dates
published
2017
online
10 - 09 - 2018
Contributors
References
  • [1] B. Kolb and L. S. Ettre, Static Headspace-Gas Chromatography: Theory and Practice, 2nd ed., Wiley-Interscience, Hoboken, 2006.
  • [2] B. V. Ioffe and A. G. Vitenberg, Head-Space Analysis and Related Methods in Gas Chromatography, Wiley-Interscience, New York, 1984.
  • [3] H. Hachenberg and A. P. Schmidt, Gas Chromatographic Headspace Analysis, Heyden, London, 1977.
  • [4] A. C. Soria, M. J. García-Sarrió, and M. L. Sanz, Trends Anal. Chem. 71, 85 (2015).
  • [5] J. Y. Zhu and X. S. Chai, Curr. Anal. Chem. 1, 79 (2005).
  • [6] D. C. Leggett, J. Chromatogr. 133, 83 (1977).
  • [7] K. Schoene and J. Steinhanses, Z. Anal. Chem. 309, 198 (1981).
  • [8] K. Schoene, W. Böhmer, and J. Steinhanses, Z. Anal. Chem. 319, 903 (1984).
  • [9] J. E. Woodrow and J. N. Seiber, J. Chromatogr. 455, 53 (1988).
  • [10] J. E. Woodrow, Energy Fuels 17, 216 (2003).
  • [11] J. C. Oxley, J. L. Smith, K. Shinde, and J. Moran, Propellants, Explos. Pyrotech. 30, 127 (2005).
  • [12] J. C. Oxley, J. L. Smith, W. Luo, and J. Brady, Propellants, Explos. Pyrotech. 34, 539 (2009).
  • [13] B. Kolb, J. Chromatogr. 112, 287 (1975).
  • [14] P. Luis, C. Wouters, B. Van der Bruggen, and S. I. Sandler, J. Chromatogr. A 1302, 111 (2013).
  • [15] P. Luis, C. Wouters, N. Sweygers, C. Creemers, and B. Van Der Bruggen, J. Chem. Thermodyn. 49, 128 (2012).
  • [16] J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 42, 517 (1997).
  • [17] J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 43, 1009 (1998).
  • [18] M. T. Sanz and J. Gmehling, Fluid Phase Equilib. 267, 158 (2008).
  • [19] J.-Y. Lee, I.-C. Hwang, S.-J. Park, and S.-J. In, J. Chem. Eng. Data 55, 864 (2010).
  • [20] I.-C. Hwang, M.-Y. Jo, H.-Y. Kwak, S.-J. Park, and K.-J. Han, J. Chem. Eng. Data 52, 2503 (2007).
  • [21] E. J. González, J. Palomar, P. Navarro, M. Larriba, J. García, and F. Rodríguez, J. Mol. Liq. 250, 9 (2018).
  • [22] B. Mokhtarani and J. Gmehling, J. Chem. Thermodyn. 42, 1036 (2010).
  • [23] I.-C. Hwang, S.-J. Park, and K.-J. Han, Fluid Phase Equilib. 303, 150 (2011).
  • [24] H. Matsuda, K. Tochigi, V. Liebert, and J. Gmehling, Fluid Phase Equilib. 307, 197 (2011).
  • [25] F. A. Banat, F. A. Abu Al-rub, and J. Simandl, Chem. Eng. Technol. 22, 761 (1999).
  • [26] F. A. Abu Al-Rub, F. A. Banat, and J. Simandl, Chem. Eng. J. 74, 205 (1999).
  • [27] F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. 41, 793 (2002).
  • [28] F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. Process Intensif. 42, 917 (2003).
  • [29] H. Takamatsu and S. Ohe, J. Chem. Eng. Data 48, 277 (2003).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aa_2017_72_2_37-50
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.