PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 71 | 1 |
Article title

Chlorates(VII) removal on Dowex™PSR-2 resin

Content
Title variants
Languages of publication
EN
Abstracts
EN
Lately there has been observed the increased presence of chlorates(VII) in the natural environment which can affect human health negatively. Therefore the removal of chlorate(VII) ions using the gel type resin functionalized with the tri-n-butyl ammonium (Dowex™PSR-2) from waters was studied. The main aim was to evaluate the effects of experimental conditions including contact time, initial solution concentration, pH and temperature on chlorate(VII) ions removal as well as the anion exchanger properties on chlorate(VII) ions sorption. It was found that only the pseudo second order model described the experimental data well and the intraparticle diffusion was not the rate-limiting step. According to the Freundlich model, the qe value was to be 69.26 mg/g at optimum conditions (pH 7.0 at 25 oC).
Keywords
Year
Volume
71
Issue
1
Physical description
Dates
published
2016
online
24 - 05 - 2016
Contributors
References
  • [1] P.K. Dasgupta, P.K. Martinelango, W.A. Jackson, T.A. Anderson, K. Tian, R.W. Tock, S. Rajagopalan, Environmental Science and Technology, 39, 1569, (2005).
  • [2] E.T. Urbansky, M.R. Schock, Journal of Environmental Management, 56, 79, (1999).
  • [3] E.T. Urbansky, Environmental Science and Pollution Research, 9, 187, (2002).
  • [4] P. Brandhuber, S. Clark, Perchlorate occurrence mapping, American Water Works Association, Washington, DC, January 2005.
  • [5] A.N. Pisarenko, B.D. Stanford, O. Quinones, Analytica Chimica Acta, 659, 216, (2010).
  • [6] R. Michalski, Zastosowanie chromatografii jonowej w analityce środowiskowej, Instytut Podstaw Inżynierii Polskiej Akademii Nauk, Zabrze 2008.
  • [7] Health Implications of Perchlorate Ingestion. Committee to Assess the Health Implications of Perchlorate Ingestion. National Research Council. The National Academies Press 2005, pp. 182-189.
  • [8] P.K. Dasgupta, P.K. Martinelango, W.A. Jackson, Environmental Science and Technology, 39, 1569, (2005).
  • [9] N. Kang, W.A. Jackson, P.K. Dasgupta, T.A. Anderson, Science and Total Environment, 405, 301, (1998).
  • [10] A.F. Davila, D. Willson, J.D. Coates, International Journal of Astrobiology, 12, 321, (2013).
  • [11] P.K. Dasgupta, Environmental Chemistry, 6, 7, (2009).
  • [12] R.E. Tarone, L. Lipworth, J.K. McLaughlin, Occupational and Environmental Medicine, 52, 653, (2010).
  • [13] T. Zewdie, C.M. Smith, M. Hutcheson, Environmental Health Perspectives, 118, 42, (2010).
  • [14] M. Borjan, S. Marcella, B. Blount, Science of the Total Environment, 409, 460, (2011).
  • [15] D.C.Harris, Quantitative Chemical Analysis, 3rd ed., New York Freeman 1991.
  • [16] S. Shakine, N. Ismael, Microchimica Acta, 66, 75, (1976).
  • [17] G.B. Haight, Analytical Chemistry, 25, 642, (1953).
  • [18] M. Tsubouchi, Analytical Chimica Acta, 54, 143, (1971).
  • [19] A.G. Briggs, W.P. Hayes, P.A. Howling, D.T. Burns, Microchimica Acta, 58, 888 (1970).
  • [20] R. Baczuk, R.J. Dubois, Analytical Chemistry, 40, 685, (1968).
  • [21] N. Kato, S. Morimoto, T. Manabe, Bunseki Kagaku, 56, 675, (2007).
  • [22] M. Kamoshita, K. Kosaka, M. Asami, Analytical Sciences, 25, 453, (2009) 453-456.
  • [23] J. Mathew, J. Gandhi, J. Hedrick, Journal of Chromatography A, 1085, 54, (2005).
  • [24] R. Aranda-Rodriguez, Z. Jin, J. Zhu, Analytical Sciences, 28, 231, (2012).
  • [25] A.R. Tripp, D.A. Clifford, Journal of American Water Works Association, 98, 105, (2006).
  • [26] A. Srinivasan, T. Viraraghavan, International Journal of Environmental Research and Public Health, 6, 1418, (2009).
  • [27] B. Gu, G.M. Brown, C.C. Chiang, Environmental Science and Technology, 41, 6277, (2007).
  • [28] D.J. Gisch, Ion exchange resins comprising interpenetrating polymer networks and their use in perchlorate removal, US 2010/0243573 A1, 2010.
  • [29] D.J. Gisch, Perchlorate removal using ion exchange resins comprising interpenetrating polymer networks, US Patent 8.241.505 B2, 2012.
  • [30] I.H. Yoon, X. Meng, Ch. Wang, K.W. Kim, S. Bang, E. Choe, L. Lippincott, Journal of Hazardous Materials, 164, 87, (2009).
  • [31] I. Tsibranska, E. Hristova, Bulgarian Chemical Communications, 43, 370, (2011).
  • [32] M. Ozacar, I.A. Sengil, Process Biochemistry, 40, 565, (2005).
  • [33] W.C. Weber, J.C. Morris, Proceedings of the American Society of Civil Engineers, 89, 31, (1963).
  • [34] K.H. Goh, T.T. Lim, Z. Dong, Water Research, 42, 1343, (2008).
  • [35] I. Langmuir, Journal of American Chemical Society, 38, 2221, (1916).
  • [36] H.F.M. Freundlich, Zeitschrift für Physikalische Chemie, 57, 385, (1906).
  • [37] X. Li Sun, Q.X. Zeng, G.Ch. Feng, Acta Physico Chimica Sinca, 25, 1951 (2009).
  • [38] Y. Zhu, N. Gao, Q. Wang, X. Wei, Colloids and Surfaces A: Physicochemical Engineering Aspects, 468, 114, (2015).
  • [39] G. Darracq, J.Baron, M. Joyeux, Journal of Water Process Engineering, 3, 123, (2014).
  • [40] R.L. Tseng, Journal of Colloid Interface Sciences, 303, 496, (2006).
  • [41] Y. Yang, N. Gao, Y. Deng, S. Zhou, Applied Clay Science, 65-66, 80, (2012).
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aa_2016_71_1_105
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.