PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 71 | 1 |
Article title

Comparison between surface and volumetric properties of short-chain alcohols and some classical surfactants

Content
Title variants
Languages of publication
EN
Abstracts
EN
Measurements of the dynamic surface tension of the aqueous solutions of methanol, ethanol, propanol, CTAB and SDDS at their given concentrations were made. From the obtained results and the literature data it was concluded that the adsorption of short-chain alcohols at the water-air interface is somewhat similar to that of classical surfactants. For that reason the relationship between the Gibbs standard free energy of adsorption of short-chain alcohols and classical surfactants at that interface was established. The correlation between the chemical potential of mixing of alcohols and surfactants was also analysed. This analysis concerned the critical aggregation concentration (CAC) of alcohols and the critical micelle concentration (CMC) of surfactants. The chemical potential of surfactant mixing was calculated from the literature CMC data for the homologous series of alkyl sulfates, alkyl sulfonates, alkyl ammonium chlorides, alkyl trimethylammonium bromides, and alkyl pyridinium bromides. The influence of the hydrophobic chain length of alcohol and surfactant molecules on the Gibbs standard free energy of their adsorption at the water-air interface and their chemical potential of mixing were considered. It appeared that there is a linear dependence between these thermodynamic functions and the number of carbon atoms increased by 1 in the hydrocarbon chains of these compounds. This confirms clearly our conclusion that the behaviour of short-chain alcohols and classical surfactants at the water-air interface and in the bulk phase of aqueous solutions is similar. 
Year
Volume
71
Issue
1
Physical description
Dates
published
2016
online
24 - 05 - 2016
Contributors
References
  • [1] M.J. Rosen, Surfactants and Interfacial Phenomena, Wiley-Interscience, New York, 2004.
  • [2] A. Chodzińska, A. Zdziennicka and B. Jańczuk, J. Sol. Chem., 41, 2226, (2012).
  • [3] R. Zana, Adv. Colloid Interface Sci., 57, 1, (1995).
  • [4] Y.F. Yano, J. Colloid Interface Sci., 284, 255, (2005).
  • [5] M. Kahlweit, G. Busse and J. Jen, J. Phys. Chem., 95, 5580, (1991).
  • [6] R. Zana and M.J. Eljebari, J. Phys. Chem., 97, 11134, (1993).
  • [7] K. Yoshida and T. Yamaguchi, Z. Naturforsch., 56a, 529, (2001).
  • [8] A.B. Roney, B. Space, E.W. Castner, R.L. Napoleon and R.B. Moore, J. Phys. Chem. B, 108, 7389, (2004).
  • [9] H. Hayashi and Y. Udagawa, Bull. Chem. Soc. Jpn., 65, 155, (1992).
  • [10] A. Vrhovšek, O. Gereben, A. Jamnik and L. Pusztaj, J. Phys. Chem. B, 115, 13473, (2011).
  • [11] M. Tomsic, A. Jamnik, G. Fritz-Popovski, O. Glatter and L. Vlcek, J. Phys. Chem. B, 111, 1738, (2007).
  • [12] I. Akiyama, M. Ogawa, K. Takase, T. Takamuku, T. Yamaguchi and N. Ohtori, J. Sol. Chem., 33, 797, (2004).
  • [13] K. Lin, X. Zhou, Y. Luo and S. Liu, J. Phys. Chem. B, 114, 3567, (2010).
  • [14] S. Dixit, J. Crain, W. C.K. Poon, J.L. Finney and A.K. Soper, Nature, 416, 829, (2002).
  • [15] J. Fidler, P.M. Rodger, J. Phys. Chem. B, 103, 7695, (1999).
  • [16] S. Alavi, S. Takeya, R. Ohmura, T.K. Woo and J.A. Ripmeester, J. Chem. Phys., 133, 074501-1, (2010).
  • [17] J.E. Desnoyers, D. Hetu and G. Perron, J. Sol. Chem., 12, 427, (1983).
  • [18] M. Bielawska, A. Chodzińska, B. Jańczuk and A. Zdziennicka, Colloids Surf. A, 424, 81, (2013).
  • [19] M. Bielawska, B. Jańczuk and A. Zdziennicka, J. Surfactants Deterg., 16, 203, (2013).
  • [20] M. Bielawska, B. Jańczuk and A. Zdziennicka, Colloids Surf. A, 454, 65, (2014).
  • [21] M. Bielawska, B. Jańczuk and A. Zdziennicka, Colloids Surf. A, 464, 57, (2015).
  • [22] M. Bielawska, B. Jańczuk and A. Zdziennicka, Colloids Surf. A, (2015), in press, doi:10.1016/j.colsurfa.2014.12.047.
  • [23] A.I. Vogel, Preparatyka organiczna, WNT, Warszawa, 2006 (in Polish).
  • [24] H.B. Klevens, J. Am. Oil Chem. Soc., 30, 74, (1953).
  • [25] A. Zdziennicka, K. Szymczyk, J. Krawczyk and B. Jańczuk, Fluid Phase Equilib., 318, 25, (2012).
  • [26] A. Zdziennicka, K. Szymczyk, J. Krawczyk and B. Jańczuk, Fluid Phase Equilib., 322–323, 126, (2012).
  • [27] B. Jańczuk, M.L. Gonzalez-Martin, A. Zdziennicka and W. Wójcik, Tenside Surfact. Det., 39, 28, (2002).
  • [28] M. Czerniawski, Roczniki Chem., 40, 1265, (1966) (in Polish).
  • [29] P.H. Elworthy and K.J. Mysels, J. Colloid Interface Sci., 21, 331, (1966).
  • [30] J.M. del Rio, G. Prieto, F. Sarrniento and V. Mosquera, Langmuir, 11, 1511 (1995).
  • [31] E. Fisicaro, M. Biemmi, C. Compari, E. Duce and M. Peroni, J. Colloid Interface Sci., 305, 301, (2007).
  • [32] E. Rodenas, C. Dolcet, M. Valiente and E.C. Valeron, Langmuir, 10, 2088 (1994).
  • [33] M.H. Ropers, G. Czichocki and G. Brezesinski, J. Phys. Chem. B, 107, 5281 (2003).
  • [34] T.M. Perger and M. Bešter-Rogač, J. Colloid Interface Sci., 313, 288, (2007).
  • [35] P. Atkins and J. de Paula, Physical Chemistry, Oxford University Press, Oxford, 2009.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_aa_2016_71_1_1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.