Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 13 (73) | 63-77

Article title

Próba identyfikacji zasięgu oddziaływania lodowca górskiego na temperaturę powietrza – na przykładzie lodowca Engabreen (Norwegia)

Content

Title variants

EN
An attempt to identify the extent of mountain glacier effects on air temperature – on the example of the Engabreen glacier (Norway)

Languages of publication

Abstracts

EN
This study aims to identify the extent of mountain glacier influence on air temperature in the vertical profile, using the Engabreen glacier (Norway) as an example. An important aspect of the work is also an analysis of the variation in surface temperature and wind conditions in the valley of the Engabreen glacier. The analysis was carried out based on measurement data of vertical air temperature taken over the glacier cavity with sensors mounted to an unmanned aerial vehicle. The field survey was carried out on 25 July 2022 in the afternoon. The results of the measurements may indicate that the presence of the glacier reduces the air temperature gradient with altitude compared to the surrounding areas. Above the glacier, the air temperature in the vertical profile increases with height. Based on the profiles taken above the glacier, it was concluded that the surface of the glacier influences the air temperature above it up to an altitude of 37–53 m above ground level.

Year

Issue

Pages

63-77

Physical description

Dates

published
2022

Contributors

  • Adam Mickiewicz University in Poznań
author
  • Adam Mickiewicz University in Poznań

References

  • Andreassen L.M., Elvehøy H., Jóhannesson T., Oerlemans J., Beldring S., Broeke van den M., 2006: Report No. 3 Modelling the climate sensitivity of Storbreen and Engabreen, Norway. Norwegian Water Resources and Energy Directorate.
  • Aubry-Wake C., Baraer M., McKenzie J.M., Mark B.G., Wigmore O., Hellström R.Å., Lautz L., Somers L., 2015: Measuring glacier surface temperatures with ground-based thermal infrared imaging. Geophys. Res. Lett., 42, 20, 8489–8497.
  • Avdan U., Jovanovska G., 2016: Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens, 2016.
  • Bravo A., Quincey D.J., Ross A.N., Rivera A., Brock B., Miles E., Silva A., 2019: Air temperature characteristics, distribution, and impact on modeled ablation for the South Patagonia Icefield. J. Geophys. Res. Atmos., 124, 907–925.
  • Carturan L., Cazorzi F., De Blasi F., Dalla Fontana G., 2015: Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling. TC, 9, 1129–1146.
  • Cohen D., Iverson N.R., Hooyer T.S., Fischer U.H., Jackson M., Moore P.L., 2005: Debris-bed friction of hard-bedded glaciers. J. Geophys. Res., 110, F02007.
  • Ebrahimi S., Marshall S.J., 2016: Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains. TC, 10, 6, 2799–2819.
  • Minder J.R., Mote P.W., Lundquist J.D., 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122.
  • Oerlemans J., Grisogono B., 2002: Glacier winds and parameterisation of the related surface heat fluxes. Tellus A: Dyn. Meteorol. Oceanogr., 54: 5, 440–452.
  • Oerlemans J., Björnsson H., Kuhn M., Obleitner F., Palsson F., Smeets C.J.P.P., Vugts H.F., De Wolde J., 1999: Glacio-Meteorological Investigations On Vatnajökull, Iceland, Summer 1996: An Overview. Bound.-Layer Meteorol., 92, 3–24.
  • Petersen L., Pellicciotti F., Juszak I., Carenzo M., Brock B.W., 2013: Suitability of a constant air temperature lapse rate over an alpine glacier: Testing the Greuell and Böhm model as an alternative. Ann. Glaciol., 54, 63, 120–130.
  • Shaw T., Brock B., Ayala A., Rutter N., Pellicciotti F., 2017: Centreline and cross-glacier air temperature variability on an Alpine glacier: assessing temperature distribution methods and their influence on melt model calculations. J. Glaciol., 63, 242.
  • Shea J.M., Moore R.D., 2010: Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. J. Geophys. Res., 115, D23107.
  • Solgaard A.M., Messerli A., Schellenberger T., Hvidberg C.S., Grinsted A., Jackson M., Zwinger T., Karlsson N.B., Dahl-Jensen D., 2018: Basal conditions at Engabreen, Norway, inferred from surface measurements and inverse modelling. J. Glaciol., 64, 246, 555–567.
  • Trepińska J., 2002: Górskie klimaty. IGiGP UJ, Kraków.
  • Zawiślak J., 2010: Słownik tematyczny terminów, wyrażeń i zwrotów stosowanych w prognozach meteorologicznych. IMGW, Warszawa.
  • EarthExploler, https://earthexplorer.usgs.gov [dostęp: 16.10.2022].
  • Elevationapi.com, https://elevationapi.com/playground_3dbbox.
  • Glacier.nve.no, http://glacier.nve.no/Glacier/viewer/CI/en/nve/ClimateIndicatorInfo/1094?name=Engabreen [dostęp: 2.11.2022].
  • Nve.no, https://www.nve.no/Hydrology/Glaciers/Svartisen-subglacial-observatory/ [dostęp:2.11.2022].
  • Rawinsonde.com, http://rawinsonde.com/ERA5_Europe/ [dostęp: 10.11.2022].
  • Statkart.no, https://openwms.statkart.no/skwms1/wms.topo4.
  • Wetter3.de, https://www.wetter3.de/archiv_gfs_dt.html [dostęp: 26.10.2022].

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
43349427

YADDA identifier

bwmeta1.element.ojs-doi-10_14746_bfg_2022_13_4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.