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Socionomic Modelling in Wireless Sensor Networks
Sourendra Sinha and Zenon Chaczko

Abstract—The performance and efficiency of a Wireless Sensor
Network (WSN) is typically subject to techniques used in data
routing, clustering, and localization. Being primarily driven by
resource constraints, a Socionomic model has been formulated to
optimize resource usage and boost collaboration among sensor
nodes. In this paper, we present several experimental results to
ascertain the underlying philosophy of the Socionomic model
for improving network lifetime of resource constrained devices –
such as, sensor nodes.
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I. INTRODUCTION

A
DVANCES in micro-electro-mechanical-systems

(MEMS) have enabled the development of miniature

sensor nodes with extremely low-power requirements [1]–[3].

Hence, fuelled by the reduced cost, size, and complexity

of such devices has revolutionized the development and

deployment of WSNs in a range of different domains. By

definition, WSNs consists of a set of sensor nodes strewn

across an ad hoc area and networked with wireless links. For

the nodes to communicate with each other, one or more nodes

utilize the in-built transceiver device to transmit messages

to neighbouring nodes. The same principle is also used to

relay messages to a base station (or sink) either by a direct

or multi-hop communication path.

However, sensor nodes are typically deployed in vulnerable

environments and are thus expected to function unassisted and

unhindered for a length of time [4]. Also, by virtue of their

limited power, computing capability, and storage, the design

and management of sensor nodes impose many challenges. In

order to circumvent these challenges, the design of the funda-

mental functions of sensor nodes needs to encapsulate aspects

of energy-awareness and inter-node collaboration [5]. In fact,

aspects of energy-awareness have already been achieved in the

physical and link layers by dynamic voltage scaling, improved

transceivers, optimized duty cycles, and energy-aware MAC

protocols. However, for a more long-term and sustainable

solution refinements are also necessary in the network layer.

In order to achieve such refinements, this paper presents a

new data routing algorithm called SNIPER that is based on a

Socionomic model involving a banking system.

Typically, a society is composed of a disparate set of

individuals who are able to react, learn and adapt to their

environments, thereby leading to the formulation of complex

social and economic phenomenon [4]. The resulting social

entropy is best exemplified by the autonomous traits in human

beings living together in groups to benefit from shared experi-

ence, mutual contributions and sharing knowledge. However,
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these autonomous traits also lead to differences in opinion,

experience and resulting action. Therefore, no two individuals

in a society are ever exactly alike, and one of the means of

assessing the underlying dynamics is through a study of the

socio-economic constraints, or Socionomics.

In this paper, we have considered the human society as a

system driven by its resource constraints and gauged by the

cost of harvesting those resources. Although, such a socio-

economic model cannot necessarily be formalized, yet, in

software intensive systems it establishes a new paradigm for

resource management. The results of our experimentation

work conducted in the application of the Socionomic model

against traditional techniques of clustering and routing are

presented in following sections.

The rest of this paper has been organizes as follows:

Section II introduces the Socionomic model, and discusses its

application to clustering, routing, and localization in WSNs.

Section III presents some of the experimental work conducted

in validating the Socionomic model. Finally, the paper is

concluded with a summary of the research work along and

prospects for further analysis in the future.

II. THE SOCIONOMIC MODEL

Social systems are composed of complex entities and in

order to apply it as a computational framework, it is important

to account for the intricacies in the relationships of these enti-

ties. Thus, the framework utilizes software agents as the basic

building block in modelling a system. By definition, agents are

characteristically adaptive, reactive, proactive and autonomous

and over time they tend to build up their knowledge base by

virtue of their set of competencies.

In a typical society, human beings interact, communicate

and adapt to changing circumstances, and thereby aid in

continuously evolving the system as a whole. As expressed

by Friedman, evolutionary mechanism result in systems com-

posed of only those agents who employ high degrees of ratio-

nality and information processing skills [4]. However, unlike

their human counterparts software agents are yet abstained

from the abilities to judge and make decisions. Thus, in

dealing with computational agents the adaptive and learning

mechanisms employed must be driven by heuristics on hu-

man learning to in turn govern their learning and adaptation

techniques.

A. The Minority Game Model

The socionomic framework, as discussed in the previous

section, uses economics as a means of both monitoring and

controlling the dynamics resulting from the interaction of

various agents in a society. Naturally, it can be assumed that

the dynamics of a society are resource driven and in order to
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monitor the behaviour of the agents we have used the Minority

Game Model.

According to this model, in a typical WSN consisting of

N nodes, the lifetime of the network depends on the level of

interaction of the constituting agents. Each agent is essentially

resident inside a sensor node, and during the initial setup the

nodes are likely to be placed in a virtual cluster formation.

Each of these clusters is managed by a single sensor node

– the Cluster Head. As the popularity of the Cluster Head

increases, more sensor nodes become part of the cluster, thus

increasing its size. In order to manage the total population of

the cluster, it is important for the Cluster Head to maximize

its lifetime as much as possible.

As per the notion portrayed by the Minority Game Model,

a set of N agents participating for acquiring resources in an

ad hoc sandbox environment. At every time step t the agents

are given the opportunity to either take part in the game by

investing in the resource pool or just staying idle. Thus, the

performance of each agent at time t lies between [-1, 1],

and therefore the social utility function can be represented

as u(t) ∈ [0, 1]. Therefore, at each time step the profit ui(t)
of an agent may be calculated as:

ui(t) = ai(t)R
[A(t)

N

]

(1)

According to Kets, based on the individual profit of each

agent, the aggregated investment A(t) can be recorded as [6]:

A(t) =

N
∑

j=1

aj(t) (2)

Where, aj(t) ∈ [−1, 1] is the action taken by agent i at time

step t.

In a typical WSN, the Minority Game Model is quite

analogous to the behaviour of the sensor nodes in that they

must either participate in relaying data to other nodes or

remain idle in a SLEEP state with the radio turned off.

Depending on the state of the agent the residual energy would

vary over time and thus affect the lifetime of the network

itself. Since the agents are allowed to behave in a stochastic

manner and the information efficiency H can be derived by

accounting for the probability that an action will be taken by

an agent.

H(π) = 〈A〉2 where 〈A〉 =

N
∑

i=1

(2πi − 1) (3)

The learning model described by Ken Wets [6], also men-

tions that the Minority Game enables agents to make strategic

decisions based on patterns identified in the game’s history of

last m actions. Essentially, for all actions in the game’s history

Hm, a response mode s assigns to each set of information hm

that is given by:

hm ∈ Hm = {(xk)k=1,2,...,m}xk ∈ {−1,+1} (4)

Thus, at each time step tthe response mode s determines

action s(hm(t)) ∈ [−1,+1] that can be taken. Since, for each

action there are basically two possible responses [-1, +1], for a

set of responses from 3 different modes, the resulting actions

can be represented as:

History Action
Hm si1 si2 si3 si4

-1 -1 -1 +1 -1 -1 +1
-1 -1 +1 -1 -1 +1 -1
-1 +1 -1 +1 -1 -1 +1
-1 +1 +1 -1 +1 -1 +1
+1 -1 -1 +1 +1 +1 +1
+1 -1 +1 -1 -1 +1 +1
+1 +1 -1 -1 -1 -1 +1
+1 +1 +1 -1 +1 -1 +1

III. SNIPER ROUTING

A WSN tends to be composed of a homogenous set of

sensor nodes that are randomly distributed in a given en-

vironment [7]. In order for the nodes to efficiently route

data among each other, relay points are nominated that are

essentially the Cluster Head (CHs). However, in any form of

data routing packet loss is a common phenomenon that needs

to be accounted for in judging the effectiveness of the routing

technique. Packet loss is typically caused by weather patterns,

radio interference, or even local node hardware. To judge the

effectiveness of the routing techniques, we have formulated a

link-cost model based on the following set of parameters:

• The processing time (tpcs),

• The channel acquisition time (tch),

• Time for transmission (tTx),

• Queuing time (tQ),

• Propagation delay (tPr)

• Retransmission timeout (tRT )

• Packet loss error rate (τ )

The link-cost model is based on a simple analogy that for

every sensor node to successfully transmit a packet an initial

amount of energy will be required [8]. Additional amounts of

energy may be necessary for re-transmitting a packet, in the

event of packet loss. The general equation for the link-cost

model can be expressed as:

Costij = (tpcs + tPR) +
( τ

1− τ

)

· (tpcs + tRT ) (5)

The processing time for each sensor node is a sum of the

time required to assimilate the data into the right packet

format, and acquire the right channel on the radio. In case the

channel acquisition fails, the transmission must be postponed

for a time period (twait). Therefore, the channel acquisition

time is finally calculated as:

tch =
( ϑ

1− ϑ

)

· twait (6)

Where, twait is the time to wait till the next retransmission

(∼3 secs), and ϑ is rate at which transmission failure occurs

(∼5%).

Using the channel acquisition time, the processing time for

each sensor node may be calculated as:

tpcs = tch + tTx + tQ (7)

Finally, the propagation delay involved in transmitting

a packet from one node to another is dependent on the distance

travelled, and the applicable latency in communication –
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Fig. 1. Plot of the relay point analysis.

typically 67% the speed of light (3×108 m/sec).

tPR =
d

s
(8)

Where, d is the distance, and s is the latency in packet

transmission.

The relay point routing technique adopted in SNIPER

involves three different routing techniques, namely:

• Nearest Neighbour – the node located nearest to the

source node is automatically selected to serve as a relay

node,

• Lowest Cost – at each hop the recipient node selects a

relay node for the next hop based on the associated cost,

• Round Robin – the simplest method of all whereby at

each hop the recipient node sequentially selects a new

relay node from its neighbour list.

The experiment carried out involved a deployment of 250

homogenous sensor nodes in a simulated environment, con-

ducted over several hours. Following the completion of the

cluster formation, three different static event sources were de-

ployed in the environment. Three sensor nodes located closest

to the event sources were configured to transmit the event

data at a rate of 4 packets every hour. The results obtained

were plotted along with the respective Packet Reception Rate

(PRR), Delivery Efficiency (DE), and delay.

In routing, a relatively high PRR is important because

it is indicative of the efficiency of resource utilization in

the network. Similarly, a low PRR results from packet loss

occurring in communication between two nodes in the routing

path – it does not account for timeouts or retry attempts

made by the source node. In order to determine the PRR

between any two nodes that lie in the path selected for routing

data between the source node and the SINK the following

equation is used:

PRRBA =
DNR(A)

DNS(B)
(9)

DNR(A) and DNS(B) imply the number of distinct

packets received by node A, and transmitted by node B,

respectively. To measure the energy efficiency of a WSN, the

DE between two nodes AB in the network can be calculated

as:

DEAB =
DNR(A)

DNS(A)
(10)

TABLE I
STATISTICAL SUMMARY ON PRR OF THE THREE NODES

Node ID Mean Median Std. Dev.

1 72.02 71.43 16.45
2 50.94 50 38.31
3 72.35 100 35.44

After analyzing the data we observed that although the same

reading and data packet was used for each of the nodes, yet the

mean varied considerably between the three nodes (Table I).

The difference in reading can be attributed to the variance in

weather conditions enforced in the simulation, which affects

the antenna gain.

IV. SNIPER CLUSTERING

A WSN must be organized into a set of clusters so as to

manage the available resources in the most efficient manner

possible. However, there are many different techniques that

may be involved in the clustering process, and hence, it is

essential to formulate a method of assessing the quality of

clustering. As per the Socionomic principles, we have adopted

the Small-World model to develop a method for calculating

the Clustering Coefficient – a measure of the degree to which

the Cluster Head is connected. The connectivity may be

determined either as global or local, where [9]:

• Global clustering is an indication of the clustering of the

whole network itself,

• Local clustering is the fraction of pairs of neighbours of

a node that are themselves neighbours.

Therefore, for a neighbourhood graph G, consisting of a set

of vertices V , and edges E, the graph can be represented as

G = {V,E}. An edge connecting nodes i and j is represented

as eij . Therefore, the neighbourhood of the vertex vi can be

represented as:

Ni = {vj : eij ∈ EΛeji ∈ E} (11)

The degree ki of node i is the number of vertices Ni in

its neighbourhood. The number of possible links between the

neighbours of node i is given by:

K =
ki(ki − 1)

2
(12)

Therefore, the local clustering coefficient Ci is given by:

Ci =
|{ejk ∈ E(G) : eij ∈ E(G)Λejk ∈ E(G)}|

K
(13)

And, the global clustering coefficient can thus be calculated

as a sum of the local clustering coefficients, as follows:

C =
1

n

n
∑

i=1

Ci (14)

In order to study the variation in cluster formation, for this

experiment, a comparative study of the cluster formation has

been performed between the SNIPER algorithm and the HEED

algorithm (Figure 2 and Figure 3).

The SNIPER algorithm being based on a social framework,

exhibits a relatively more complex set of interconnections
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SNIPER Algorithm

Cluster Formation

Delaunay Representation

Area: 500 x 500

Scale: 10:1

Fig. 2. SNIPER cluster formation overlayed with its Delaunay Graph.

between the nodes, than is evident for HEED. In order to

assess the strength, efficiency, and collaboration of these

algorithms, a hierarchical clustering coefficient has been used.

One of the key assumptions made in this experiment made is

that while SNIPER is capable of altering its communication

range, HEED constantly uses the maximum possible range.

Therefore, to inter-link all the Cluster Heads in the network

separated by their geodesic distance, d, the number of hops

required for SNIPER will be greater than HEED. Since, the

connectivity of the network also depends on the number of

inter-relationships for each node, the following elements must

also be considered:

• Node Degree (nd),

• Hierarchical Degree (hd)

• Edges (e),

• Divergence (D),

• Clustering Coefficient (CC).

The method adopted to calculate the Clustering Coefficient

involved the following:

• Determining a count of the number of neighbours the

reference node possesses at each successive hop count,

HEED Algorithm

Cluster Formation

Delaunay Representation

Area: 500 x 500

Scale: 10:1

Fig. 3. HEED cluster formation overlayed with its Delaunay Graph.
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Fig. 4. Cluster formation analysis of SNIPER and HEED.

as applicable,

• The hierarchical degree of the reference node at each hop

count,

• The divergence measurement of the reference node at

each hop count, and finally,

• The Clustering Coefficient itself.

A study of the plot of the Cluster Formation Analysis

and Divergence analysis revealed that although the number

of hop counts for SNIPER was greater than HEED, it still

offered a better Hierarchy Degree, implying a better level of

inter-node connectivity across the network. Similarly, a study

of the Divergence Analysis also showed a higher number

of connectivity links for SNIPER (Figure 4 and Figure 5).
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Fig. 5. Comparison of divergence and cluster coefficient between SNIPER
and HEED.
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Fig. 6. A graphical comparison of the readings.

Also, the higher number of hop count for SNIPER is further

evidence that it offers a greater depth in the links originating

from the Sink, and therefore much better network coverage.

At the same time, the load on individual Cluster Heads is

also reduced because of the fewer number of member nodes.

The average connectivity level (or load) of the Cluster Heads

is evidenced by the lower Divergence factor for SNIPER,

implying more uniform resource utilization across the network.

Therefore, it not only ensures better connectivity between the

nodes, but also a higher coverage across the network.

Fig. 7. Vulnerability analysis of different algorithms in cluster formation.

Fig. 8. Vulnerability analysis using node degree and transmit count as the
factor.

It can be also observed that there is indeed a direct relation-

ship between the hop count, average hierarchy degree, and av-

erage neighbour count for both HEED and SNIPER (Figure 6).

The average hierarchy degree is inversely proportional to the

maximum hop count. Although the pattern is more obvious in

case of HEED, yet it is also evident for SNIPER, suggesting

the presence of this relationship is subject to parameters for

each clustering technique.

Therefore, the Clustering Coefficient serves as a good mea-

sure for analysing two different clustering techniques sharing

a common deployment of nodes. However, yet another noble

concept also capable of assessing the quality of network cluster

formation is the Vulnerability Coefficient. The technique is not

only useful in assessing the vulnerability of a WSN, but can

also be incorporated in making critical routing decisions at

Cluster Heads.

Typically, during cluster formation and data routing certain

sensor nodes in a network are exercised more than others by

virtue of their location or placement. As a result, over time re-
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Fig. 9. Vulnerability analysis using residual energy as factor.

source vacuums tend to develop among the over-exercised set

of sensor nodes, thereby affecting inter-node communication.

In other words, the stability of a WSN is inversely proportional

to its vulnerability coefficient, and directly proportional to the

lifetime of the network.

In order to calculate the vulnerability coefficient, the WSN

needs to be analysed in two stages. In the first stage, the

vulnerability of the network is determined following the cluster

formation, and in the second stage the effect of data routing

was studied on the whole network. Both stages were repeated

for the SNIPER, LEACH, and HEED protocols.

For the purpose of this study, the vulnerability is essentially

the square root of the product of the respective level of threat

and risk that a node faces, represented by:

vij =
√

tij × rij (15)

The level of threat faced by a node is determined by:

tij =
d2ij − 1

d4ij
× F (16)

Where, tij is the threat level, dij is the distance, and F is the

vulnerability factor between node i and j.

Similarly, the level of risk a node is subject to at discrete

points in time is given by:

rij =
d2ij + (7 × dij) + 3

d2ij
× 5 (17)

Where, rij is the risk level faced by node i with respect to

node j, and dij is the distance between node i and j.

Cluster formation is typically the most resource intensive

operation in a WSN, and hence, the efficiency of a network

is dependent on the number of packets that get exchanged

during this operation. The surface plot presented in Figure

7 is reflective of the vulnerability faced by 250 nodes in

the network. As can be observed from the plot, the SNIPER

algorithm by virtue of its pseudo-election scheme of cluster

formation based on Socionomics shows the least impact on

sensor node distribution.

Similarly, to study the effect of data routing on node vul-

nerability, the impact of 1000 data transmissions on network

vulnerability was analysed based on network vulnerability,

packet loss, and PRR. The results of the experiment presented

in Figure 8 and Figure 9, show that the network was subjected

to a packet loss of 10%. A statistical representation of the

data acquired on vulnerability analysis of data routing using

SNIPER and HEED further demonstrate the contrast in the

vulnerability index.

Therefore, the stability of a WSN can be defined by

the strength of each individual edge in the directed graph

G = {V,E}. As the vulnerability of a node rises, the cost

of maintaining the link with its neighbouring nodes separated

by the geodesic distance, d, also increase.

V. SNIPER LOCALIZATION

While a number of optimizations have been introduced in

the data routing for WSNs. However, information collected

from the network by a Sink is of little value if the source of

certain events cannot be determined. Although, the simplest

technique for including location information is by using a

GPS, yet, it is also very resource intensive and hence avoided.

Other techniques such as the centroid and triangulation algo-

rithm serve as alternate means of estimating a node location

within a degree of localization error. The precision of a

localization algorithm is typically affected by:

• Number of neighbours,

• Number of anchor points,

• Density of the network,

• Strength of the transceiver device on nodes,

• Packet loss,

• Incorrect calculation of geodesic distance between nodes,

and

• Localization algorithm.

In this paper, we introduce a new localization technique

called the MP-RSSI algorithm. Drawing from the concepts

presented in the DV-Hop algorithm [10], the MP-RSSI algo-

rithm introduces significant improvements by using a single

phase transmission from the anchor nodes, thus substantially
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Fig. 10. Sample localization using HEED.

improving the energy requirements. By using this technique,

the sensor nodes do not need to rely on the anchor nodes being

aware of each other, and instead rely on the distance estimation

between neighbouring nodes by determining the hop count

from respective anchor nodes. The distance between each node

is determined based on the RSSI of the packets received from

neighbouring nodes using the following equation:

d =
λ

4× π
×

√

Ptx(mW )

Prx(mW )
(18)

It is assumed that nodes in a WSN are likely to be scattered

in a random manner, and routes from the Sink to a particular

node may not necessarily be a straight line. Therefore, the MP-

RSSI algorithm uses a scaling factor whereby a confidence

level metric is applied in determining the distance between

each node, calculated using the following equation:

ϑ =
1

1 + (A× τ) − (B × τ2) + (C × τ2)
(19)

Where, τ is the hop count, and A, B and C are constants used

to control the level of impact.

Fig. 11. Confidence level trend line for MP-RSSI.
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Fig. 12. Localisation of 250 nodes using 4 anchor points.

The distribution of the confidence level at each hop count is

calculated by setting the constants A, B, and C, to be 0.168,

0.134, and 0.755, respectively. A plot of the confidence level

for Eqn. 15 shows that with increasing distance the confidence

level steadily drops (Figure 11).

In our experiments, the MP-RSSI algorithm was compared

against the DV-Hop and Centroid algorithms, and was resulted

in a localization error of approximately 7%, which is similar

to the DV-Hop algorithm (Figure 12). The results were further

ascertained through further experiments involving a variance in

the number of nodes and anchor points and in each case, MP-

RSSI and DV-Hop presented comparable levels of accuracy.

The localization error, δ, was calculated using the following

equation:

δ =

√

(xest − x)2 + (yest − y)2 + (zest − z)2
√

x2 + y2 + z2
(20)

Therefore, it can be concluded that while the MP-RSSI

algorithm does not necessarily improve the precision in lo-

calization, it does improve the resource usage, and is hence

an improvement on existing techniques.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have used the Socionomic model to present

a few novel concepts in executing some of the fundamental

operations of a WSN, namely, clustering, routing, and localiza-

tion. In each case, we have not only formulated a new method

for calculating the respective coefficients, but also showed that

the SNIPER algorithm is able to perform better, if not similar

to existing techniques, such as LEACH and HEED.

The socioeconomic framework has allowed us to attempt an

efficient approach towards clustering and routing in a WSN.

The proposed algorithm is both flexible and dynamic and can

thus be adopted in a range of different domains. In order to

justify the application of the model, we used a specifically

designed simulation platform to assess its functionality in a

range of different scenarios. In the experiments that were

conducted we demonstrated the capabilities of the SNIPER

protocol and also provided results that are comparable to other

known algorithms, such as, LEACH, HEED and GAF.

The future work will involve the adaptation of the sim-

ulation framework onto real sensor nodes and thus realize

the potential of the model in an actual WSN application.

There are several potential areas of application of the SNIPER

framework - primarily in areas that rely on energy efficiency
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and dynamic route calculation. Some of the potential areas of

application include the deployment of sensor nodes in remote

forests, near harbours to study the level of tides and aid

in navigating ships, tunnel and bridge monitoring. We have

already observed that the SNIPER algorithm scales well in

large sensor networks, and thus brings forth optimization in

computing and resource requirements.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based
User Location and Tracking System,” Proceedings of IEEE Computer

and Communications Societies, vol. 2, pp. 775–784, March 2000.
[2] S. Capkun, M. Hamdi, and J. P. Hubaux, “GPS-Free Positioning in

Mobile Ad-Hoc Networks,” in Proceedings of the 34th Annual Hawaii

International Conference on System Sciences, January 2001, p. 10.
[3] H. C. Chu and R.-H. Jan, “A GPS-Less Positioning Method for Sensor

Networks,” The 1st International Workshop on Distributed, Parallel and

Network Applications, vol. 2, pp. 629–633, July 2005.
[4] S. Sinha, “Towards a Socionomic Framework for Collaborative Data

Routing in Wireless Sensor Network,” in Doctorate Thesis. Sydney:
University of Technology, 2010.

[5] D. Niculescu and B. Nath, “Ad-Hoc Positioning System (APS),” Global

Telecommunications Conference, vol. 5, pp. 2926–2931, November
2001.

[6] W. Kets, The Minority Game: An Economics Perspective. SSRN
eLibrary, 2007.

[7] J. Deng, Y. S. Han, W. B. Heinzelman, and P. K. Varshney, “Scheduling
Sleeping Nodes in High Density Cluster-Based Sensor Networks,”
Mobile Networks and Applications, vol. 10, no. 6, pp. 825–835, 2005.

[8] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using
AOA,” 22th Annual Joint Conference of the IEEE Computer and

Communications Societies, vol. 3, pp. 1734–1743, 2003.
[9] A. K. Naimzada, S. Stefani, and A. Torriero, Networks, Topology and

Dynamics: Theory and Applications to Economics and Social Systems.
Berlin: Springer-Verlag, 2009.

[10] Y.-H. Gau, H.-C. Chu, and R.-H. Jan, A Weighted Multilateration

Positioning Method for Wireless Sensor Networks. Taiwan: National
Chiao Tung University, 2008.

[11] M. Friedman, Essays in Positive Economics. University of Chicago
Press, 1996.

[12] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic Fine-Grained
Localization in Ad-Hoc Networks of Sensors,” in Proceedings of the 7th

Annual International Conference on Mobile Computing and Networking,
Rome, Italy, 2001.

[13] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a Global Coordinate
System from Local Information on an Ad Hoc Sensor Network,”
in Proceedings of the 2nd International Conference on Information

Processing in Sensor Networks, 2003.


