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Analysis of non-stationary temperature field generated
by a shaftless screw conveyor heated by Joule–Lenz effect
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The non-stationary problem of temperature distribution in a circular cylindrical channel of infinite
length filled with a homogeneous biomass material moving with a constant velocity in the axial
direction was investigated. The heat source was a shaftless helical screw (or auger), which was heated
with an electric current due to the Joule–Lenz effect and rotated uniformly around the axis of symmetry
of the channel. Similar problems arise in the thermal processing of biomaterials using screw conveyor
in pyrolysis and mass sterilization and pasteurization of food products. The problem is solved using the
expansion of given and required functions in Fourier series over angular coordinate and integral Fourier
and Laplace transforms over axial coordinate and time, respectively. As a result, the temperature field
is obtained as the sum of two components, one of which, global, is proportional to time, and the
other, which forms the microstructure of the temperature profile, is given by Fourier–Bessel series.
The coefficients of the series are determined by the integrals calculated using the Romberg method.
Based on the numerical calculations, the analysis of the space-time microstructure of the temperature
field in the canal was performed. A significant dependence of the features of this microstructure on
the geometric, kinematic and thermodynamic characteristics of the filling biomass and the screw was
revealed.
Keywords: screw reactor, rotating shaftless screw, electric heating, non-stationary temperature field,

analytico-numerical method

1. INTRODUCTION

In recent years, theoretical and experimental studies of pyrolysis of various raw materials, including
biomass and waste, have been intensified (Guda et al., 2015). At the same time, screw reactors (or auger
reactors) are attracting more and more attention in the scientific literature. These reactors are attractive for
their versatility in transforming biomass wastes, and have been recognized as one of the best technologies
for slow or intermediate pyrolysis, but they have also become one of the most popular and commercially
available methods. A comprehensive assessment of screw systems, their advantages and disadvantages,
along with historical aspects of the development of such technical equipment has recently been presented
in a broad literature review by Campuzano et al. (2019).

As is known, raw material is fed into a heated reactor and transported by a rotating screw. In addition to
transportation, appropriately designed screws, improving the contact between the particles of the trans-
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ported mass and the heated surface, are able to enhance the mixing of particles and heat transfer between
solid coolants and reagents (Aramideh et al., 2015), and ensuring the optimal duration of the feedstock
in the reactor under appropriate thermal conditions also promote pyrolysis (]Nachenius et. al., 2015). It is
also known that pyrolysis is an endothermic process that requires the addition of heat not only to increase
the temperature of the reagents to the pyrolysis temperature, but also to stimulate chemical reactions of
pyrolysis, i.e. enthalpy for pyrolysis (Martínez et al., 2013). The supply of thermal energy required for
pyrolysis in single- or twin-screw reactors is achieved by indirect heating through the walls of the reactor,
through the surface of the screw, or by direct heating using heat carriers. Herewith the heating temperature
should be slightly higher than the required pyrolysis temperature. Thus, one of the important issues in the
design of screw reactors is to create such a distribution of the temperature field in them, which would
contribute to the efficient performance of the pyrolysis process (Yang et al., 2013). Moreover, as the scale of
the reactor increases, heat transfer becomes a primary problem for improving the efficiency of the pyrolysis
process, especially fast pyrolysis. In this regard, Ledakowicz et al. (2019) based on extensive experiments
showed, using a pyrolyzer with an electrically heated screw, the principle which was described by Lepez
and Sajet (2009) in their patent, that the pyrolysis temperature has a great influence on the product yield
and product properties.

A typical screw reactor consists of a fixed outer shell and a screw that rotates around a central, sometimes
empty shaft. The geometry of the screwflight is one of themain features, which ismodified depending on the
application (transportation, feeding, mixing or their combination) and process requirements. In industrial
applications both shafted and shaftless screw systems are used (Biogreen, 2016; ETIA S.A.S., 2019). This
type of screw, heated by the Joule effect, is used for pyrolysis of viscous, gummy or sticky substances and
mass sterilization and pasteurization of food products (THERMOFLO Equipment Company, 2018).

Along with experimental research, mathematical modeling of processes in screw reactors occupies an
important place. Thus, in the works of Shi et al. (2019a and 2019b) using numerical hydromechanics
methods (see e.g., Kovacevic et al., 2007), the distribution of velocities of a multiphase liquid in a screw
reactor was simulated, and the axial temperature distribution was also determined (Nachenius et al., 2015).
Nevertheless, the problem of the analytical description of the temperature field distribution in the reactor,
its dependence on the geometric, mechanical and thermodynamic parameters of the systems, remains
important.

In this paper, an attempt is made to mathematically model the temperature field in a circular heat-insulated
channel filled with a mobile medium such as homogeneous biomass material, assuming that the main heat
in the reactor comes from a rotating shaftless screw due to the Joule–Lenz effect. It is necessary to perform
an analysis of the temperature in the channel depending on the spatial coordinates and time, the geometric
dimensions of the screw and the angular velocity of its rotation, the thermodynamic parameters of the
substance filling the channel and the speed of its movement.

2. STATEMENT OF THE PROBLEM AND SOLUTION METHOD

Consider an infinitely long channel of circular cross section with radius R1, containing e.g. homogeneous
biomass that moves in the axial direction with a uniform distribution of linear velocities v0. Biomass is
heated due to the action of a heat source in the form of a screw of finite width, which rotates around the axis
of symmetry of the channel with an angular velocity ω. The screw, in turn, is heated by a pulsed electric
current of force I, uniformly distributed over its surface. Assume also that the channel surface is thermally
insulated. Then to find the temperature field in the channel it is necessary to solve the nonstationary
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inhomogeneous equation of thermal conductivity (Luikov, 1968; Carslaw and Jaeger, 1959)

cp ρ
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∂τ
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)
= λ

[
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r
∂

∂r

(
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]
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(0 < r < R1, 0 < θ < 2π,−∞ < z < ∞, τ > 0)
(1)

under the initial condition
T ��τ=0 = T0 (2)

the condition of thermal insulation on the surface of the channel

∂T
∂r

�����r=R1

= 0 (3)

and the condition of boundedness of a solution of the problem on the axis of the channel

∂T
∂r

�����r=0
= 0 (4)

Here ρ is the density of the moving biomass, cp is its heat capacity at constant pressure; λ is the coefficient
of thermal conductivity; r , θ, z – the cylindrical coordinate system with origin on the axis of the circular
channel; τ is the time.

Replacing screw by a system of continuously distributed heat sources, the intensity function of the heat
source q(r, θ, z, τ) is written in the form

q(r, θ, z, τ) =
q0ε

ε − ε0
r
[
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(
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)] ∞∑
m=−∞

δ
[
(θ + 2πm + ωτ)r cos ϕ0 − z sin ϕ0

]
H (τ) (5)

where H (x) is the Heaviside function, δ(x) is the Dirac function, q0 = ρ0 j2; ρ0 is the specific electrical
resistance of the conductor; j = I/S is the electric current density of a conductor, I = const.; S = h × h1
is the cross-sectional area of the screw, h is its thickness and h1 = R0−R2 is its width; R0 and R2 are the
radii of the edges of the screw equidistant to the surface of the cylindrical channel, 0 < R2 < R0 < R1; ε =
R0/R1, ε0 = R2/R1; ϕ0 is the angle of rise of the edges of the screw to the axis of the channel 0z (Fig. 1;
here, the upper figure is for the spiral only, and the lower figures are for the entire system).

It is convenient to use a substitute to solve the problem (Smirnov, 1964)

T (r, θ, z, τ) − T0 = U (r, θ, z, τ)ebz (6)

Then, if b = v0/(2a), where a is the coefficient of thermal diffusivity of biomass, a = λ/(cp ρ), from
Eq. (1) we obtain the differential equation

1
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(0 < r < R1, 0 < θ < 2π, −∞ < z < ∞, τ > 0) (7)

with appropriate initial and boundary conditions
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Fig. 1. View of the shaftless screw and the dimensions of its sectional flight

Let us represent the functions U (r, θ, z, τ) and q(r, θ, z, τ) in the form of Fourier series (Korn and
Korn, 2000)

U (r, θ, z, τ) =
∞∑

m=−∞

Um(r, z, τ)e−imθ (0 < θ < 2π) (11)

q(r, θ, z, τ) =
∞∑

m=−∞

qm(r, z, τ)e−imθ (0 < θ < 2π) (12)

where for the expansion coefficients there are formulae:

Um(r, z, τ) =
1

2π

2π∫
0

U (r, z, θ, τ)eimθ dθ

qm(r, z, τ) =
1

2π

2π∫
0

q(r, z, θ, τ)eimθ dθ

(13)

We also apply to Eqs. (7)–(10) the integral Fourier transform over z and the integral Laplace transform
over τ (Korn and Korn, 2000). Then we obtain the following boundary value problem:

[
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−
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UFL
m (r, k, p) +QFL

m (r, k, p) = 0 (0 < r < R1) (14)
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= 0 (16)
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Here

UFL
m (r, k, p) =
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(17)

are the Fourier transform over z and the integral Laplace transform over τ of the functions Um(r, z, τ) and
Qm(r, z, τ), where

Qm(r, z, τ) = λ−1qm(r, z, τ)e−bz (18)

and also

s =
√

k2 + b2 +
p
a

(Ims ≥ 0) (19)

Solving the boundary value problem (14)–(16) (Korn and Korn, 2000), we obtain

UFL
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+
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(20)

where

DFL
m (r, r ′, k, p) =

Im(sr ′)
I ′m(sR1)

Sm(sR1, sr) (21)

Sm(sx, sy) = I ′m(sx)Km(sy) − K ′m(sx)Im(sy) (22)

Here Im(x) is the modified Bessel function of the m-th order; Km(x) is the McDonald function of the m-th
order; the prime symbol marked the derivatives of these functions.

Returning now in Eq. (20) to the field of originals, we obtain a representation for Um(r, z, τ) in the form of
convolution integrals

Um(r, z, τ) =

r∫
0

r ′dr ′
∞∫

−∞

d z′
τ∫

0
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(23)

The analysis of the function DFL
m (r, r ′, k, p), based on the asymptotic behavior of cylindrical functions

for small arguments sx and sy (Abramowitz and Stegun, 1972), shows that for m = 0 this function has a
pole at the point s2 = 0, i.e., at the point p = p0 = −a(k2 + b2). At the same time, for arbitrary m, this
function has poles that coincide with the zeros of the function I ′m(sR1). If we take into account that Im(x) =
e−iπm/2 Jm(ix), where Jm(y) is the Bessel function of the m-th order, then the zeros of function I ′m(sR1)
will be determined by the zeros µmn of the Bessel derivative function J ′m(µ) as sR1 = −iµmn. That is, from
(16) we obtain the poles of the function DFL

m (r, r ′, k, p) in points p ≡ pmn = −a
[
k2 + b2 + (µmn/R1)2

]

(m = 0,±1,±2, . . .; n = 1, 2, . . .). Then, returning to the field of originals, after some transformations of
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this function we receive
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where δm0 is the Kronecker symbol (δ00 = 1; δm0 = 0, m , 0). Since this function is symmetric with
respect to r and r ′, the integrals over r ′ in Eq. (23) will pass into one integral over r ′ from 0 to R1:
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where Eq. (18) is taken into account.

From relation (5), using some properties of the Dirac function and equality (Krein, 1972)
∞∑
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Substituting this function into Eq. (25), after calculating the internal integrals we find
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where
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Substituting the function Um(r, z, τ) into formula (11) and using the properties (Abramowitz and Stegun,
1972): J−m(x) = (−1)mJm(x), µ−m,n = µmn, as well as introducing dimensionless variables

ξ =
r
R1
, ξ ′ =

r ′

R1
, ζ =

z
R1
, Fo =

ατ

R2
1

(30)

https://journals.pan.pl/cpe124



Analysis of non-stationary temperature field generated by a shaftless screw conveyor heated by Joule–Lenz effect

where Fo is the Fourier number, we obtain the final expression for the temperature in the form

T (r, θ, z, τ) ≡ T (ξ, θ, ζ, Fo) = T0 +
q0ε
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where
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√
1

Fo2
mn

(ξ) + (2πm)2
(

1
ξFov

−
1
Fo0

)2
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(
1
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−

1
Fo0
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Here Fo0 is the Fourier number corresponding to the period of screw rotation τ0 = 2π/ω; Fo0 = ατ0/R2
1;

Fov is the Fourier number corresponding to the period of “rotation” of the biomass particle along the
trajectory of the helix on one of the cylindrical surfaces of the screw (e.g., the outer) τv = 2π/ωv,
ωv = v0 tan ϕ0/R1; Fov = ατv/R2

1; Fomn(ξ) are the Fourier numbers corresponding to the relaxation times
of partial heat pulses:

Fomn(ξ) =
1

µ2
mn +

(
m tan ϕ0

ξ

)2 (34)

Note that in the limiting case of small values of the difference ε − ε0 (R0 − R2 = R1) the formula (31) will
correspond to the case of heating biomass in the channel by a screw in the form of a wire with a rectangular
cross-sectional area S.

3. NUMERICAL ANALYSIS OF TEMPERATURE DISTRIBUTION

The calculation of the temperature distribution in the channel is performed using thermodynamic (cp, ρ,
λ), thermoelectric ( j, ρ0), geometric (ε, ε0, ϕ0) and kinematic (ω, v0) parameters. The specific values of
these parameters are given below (Nachenius et al., 2015; Shi et al., 2019b):

• initial temperature T0 = 293.15 K,
• outer screw radius R0 = 0.025 m (ε = 0.962),
• inner screw radius R2 = 0.009 m (ε0 = 0.346),
• thickness of screw h = 0.003 m
• channel radius R1 = 0.026 m,
• screw angle ϕ0 = 73.68◦ (this corresponds to the pitch of the screw d = 2πR0 cot ϕ0 = 0.046 m),
• angular velocity of the screw ω = 0.292 Hz (this corresponds to Fo0 = 0.0135),
• resistivity of the tungsten conductor ρ0 = 5.44 · 10−8 Ω·m,
• heat capacity of the mixture cp = 1502 J/(kg K) at operating temperature T = 598 K,
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• thermal conductivity of the mixture λ = 0.35 W/(m K),
• density of biomass ρ = 551 kg/m3,
• mass flow rate vM = 6.89 · 10−4 kg/s,
• velocity of the mixture movement v0 = vM/

(
ρπR2

1

)
= 5.89 · 10−4 m/s (this corresponds to Fov =

0.593).
The calculations were performed using programswritten in the algorithmic language Fortran-90. Herewith,
for the calculations of cylindrical functions and zeros µmn, we use ready-made programs presented by
Zhang and Jin (1996). The control over calculation results of these values is carried out on the basis of the
tables given by Abramowitz and Stegun (1972). The integral Ψmn(θ, ζ , Fo) is calculated on the basis of
Romberg’s method (Cheney and Kincaid, 2008).

Fig. 2 shows the time temperature distribution calculated on the axis ξ = 0 and on the surface ξ = 1
with the above system parameters and θ = 0◦, ζ = 0.5, I = 185 A (the value of Fo = 0.5 corresponds
to τ = 13.3 min). Here, the value for I is set on the basis of the performed temperature measurements
T∗ = 1123.15 K at the specified time τ∗ = 20 min (Fo∗ = 0.75) (Ledakowicz at al., 2019), based on the
formula

T∗ ≈ T0 +
q0ε(ε + ε0)
2πλ cos ϕ0

Fo∗ (35)

that is

I ≈
S
R

√
2πλ (T∗ − T0) cos ϕ0
ε(ε + ε0)ρ0Fo∗

(36)

Fig. 2. The time dependence of the temperature at the points ξ = 0
and ξ = 1, θ = 0◦, ζ = 0.5, I = 185 A

As can be seen from Fig. 2, the dependence of temperature on time on the axis of the channel is qualitatively
the same as in the case, when a constant heat flux is set on the surface of the cylinder (Luikov, 1968),
i.e. the temperature is a monotonic function of time. In the classical case (Luikov, 1968), the temperature
on the surface of the cylinder is also a monotonic function over time. We have another situation in this
study, where the heat source is a rotating screw. Here, the temperature on the surface of the channel is a
nonmonotonically increasing and oscillating function of dimensionless time, i.e. the Fourier numbers.
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The microstructure of the above time dependence of the temperature on the surface of the channel is shown
in Fig. 3. It can be noted that this temperature is an amplitude-modulated function over time (Fig. 3a), and
the individual oscillations in shape resemble sawtooth signals with an amplitude of about 18 K (Fig. 3b).
The Fourier number corresponding to the period of oscillations (the period of rotation of the screw) is
equal to Fo0 = 0.0135.

a) b)

Fig. 3. The time dependence of the temperature T at the point ξ = 0.8, θ = 0◦, ζ = 0.5, I = 185 A
without linear term proportional to Fo (a – amplitude-modulated part of the temperature in a wider

time range; b – local structure of temperature oscillations)

For a detailed analysis of the thermal state of biomass in the channel, it is advisable to calculate the
distribution of temporal characteristics of the temperature in different directions in the channel. In order
to be independent of the Joule heat intensity, consider the function ϑ = (T − T0)πλ/q0, which describes
the influence of geometry and angular velocity of the screw, as well as thermophysical parameters and
flow rate of biomass on the formation of the temperature field. Hereinafter, this function will be called the
function of screw influence on the temperature field, or simply the influence function.

Fig. 4 shows the angular-temporal dependence of this function on the circle ξ = 0.8, 0 ≤ |θ | ≤ 180◦ of the
cross-section ζ = 0.5 with constant all other parameters of the system. Here, the range of change of the

Fig. 4. The time dependence of the temperature on the circle ξ = 0.8, 0 ≤ |θ | ≤ 180◦, ζ = 0.5
for four periods of oscillation
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Fourier number Fo corresponds to four periods of rotation of the screw. In this case q0/(πλ) = 496.8 K.
The calculations show that the function ϑ increases stepwise with time, and the steps are inclined relative
to the angular coordinate, and almost unchanged on the plateau surface, i.e. in cross sections of the channel
rotated to the axis of symmetry at an angle π/2 − ϕ0.

Fig. 5 illustrates the axial-temporal distribution of the influence function ϑ on the generating cylindrical
surface ξ = 0.8, θ = 0◦ along four dimensionless pitchs of the screw 0 ≤ |ζ | < 2∆, ∆ = d/R1
(d = 2πε cot ϕ0). As in the previous case, the temperature stepwise increases over timewith a dimensionless
period Fo0. Along the axial direction, the temperature also changes periodically. The period of change
coincides with the pitch of the screw, within which the temperature amplitude has a sawtooth appearance.
In general, the distribution of the temperature field has the character of periodic plateaus, the direction of
each of which is inclined at an angle ϕ0 to the axis of symmetry of the channel.

Fig. 5. The time dependence of the function ϑ along the generatrix
of screw cylinder ξ = 0.8, θ = 0◦

Fig. 6 shows the distribution of the function ϑ on the cross-sectional surface of the channel ζ = 0.5 at time
τ = 13.3 min (Fo = 0.5). As can be seen, the temperature increases with the departure from the axis of
the channel, and then its value becomes almost constant and even decreases slightly when approaching the
surface of the channel. A significant change in temperature in the form of a transition to an elevated plateau
is observed in those cross-sections of the channel, where at this time the edge of the screw (in this case at
60◦ < θ < 180◦) is situated. It is obvious that with the change of time this plateau transfers its location.

Fig. 6. The three-dimensional radial-angular temperature distribution for ζ = 0.5, Fo = 0.5
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Fig. 7 illustrates a similar temperature distribution, but in the plane of the longitudinal section of the
channel θ = 0◦ within a little more than four steps of the screw 0 ≤ |ζ | ≤ 4 and also at the time when
Fo = 0.5. The occurrence of ridges in a profile of a temperature field corresponds to the approach of edges
of the screw to points of the plane of this section.

Fig. 7. The instantaneous radial-axial distribution of the function ϑ
in the plane 0 ≤ ξ ≤ 1, 0 ≤ |ζ | ≤ 4 at θ = 0◦, Fo = 0.5

The distribution of the temperature field on the cylindrical surface ξ = 0.8, 0 ≤ |θ | ≤ 180◦ within
0 ≤ |ζ | ≤ 4 inside the channel at Fo = 0.5 is shown in Fig. 8. This figure shows that the temperature
profile exactly matches the profile of the screw. In this case, if with the change of the axial coordinate ζ the
temperature has a periodic sawtooth character (amplitude of oscillations of the function ϑ ≈ 0.01), then
in the places of approach of the outer edge of the screw to the cylindrical surface the temperature field on
the ridges, inclined to the channel axis at an angle ϕ0, is almost constant (within the calculation error).

Fig. 8. The instantaneous axial-angular distribution of function ϑ on the surface
of the cylinder 0 ≤ |θ | ≤ 180◦, 0 ≤ |ζ | ≤ 4 for ξ = 0.8, Fo = 0.5

So far, we have investigated the temperature field at constant geometric and kinematic parameters of the
system. Let us now evaluate how the temperature changes at a certain point of the channel with a change
in the angular velocity and different widths of the screw. It is known that manipulation of the speed of
screw rotation allows to flexibly adjust the residence time of the flow of biomass particles inside the screw
reactor (Nachenius et al., 2015; Shi et al., 2019b). Therefore, it is important to assess the temperature field
that arises.
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Fig. 9 illustrates this case for the influence function ϑ calculated at the point ξ = 0.8, θ = 0◦, ζ = 0.5,
Fo = 0.5 at fixed values of ϕ0 = 73.68◦ and v0 = 5.89 · 10−4 m/s. From the calculations it follows that the
temperature amplitude varies with the change of the screw speed, decreasing with increasing ω, i.e. the
increase in the angular velocity has a damping character.

Fig. 9. The dependence of of function ϑ on rotation frequency ω of screw at the point ξ = 0.8, θ = 0◦, ζ = 0.5,
Fo = 0.5 for ϕ0 = 73.68◦ and v0 = 5.89 · 10−4 m/s (Fov = 0.593)

A similar dependence of the function ϑ can be studied at a fixed angular velocity ω, but at different values
of the linear velocity of biomass v0. However, due to the fact that the chosen value v0 is very small, and the
oscillating term containing this value, according to Eq. (32), is multiplied by the rapidly decaying exponent,
it is more advantageous to analyze the dependence of ϑ on the dimensionless Fourier number Fov. Such
characteristic is shown in Fig. 10. It follows that for small values of Fov the function ϑ oscillates. However,
this range corresponds to large values of the rate v0, which is unrealistic in the practice of biomass pyrolysis.
More realistic is the range of larger values of Fov, where the function ϑ is almost constant, i.e. the effect
of changes in the flow rate of biomass on the temperature field is almost insignificant. In the processing
of biomass raw materials with particles of different shapes, sizes and morphological characteristics, the
mechanical force from the rotating screw and, consequently, the geometry of the helical shell play an
important role (Nachenius et al., 2015; Shi et al., 2019b). Therefore, it is also necessary to monitor how
the temperature field changes when the geometric dimensions of the heat source, i.e. the screw, change.
The corresponding results of calculations are shown in Fig. 11. In particular, the curve denoted by the
letter a illustrates the dependence of the function ϑ on the dimensionless inner radius of the screw ε0
at a fixed outer radius (ε = 0.962), and the curve denoted by the letter b demonstrates the dependence
of this function on the dimensionless outer radius of the screw ε with a fixed inner radius of the screw
(ε0 = 0.346). In both cases, the calculations were performed at the point of the channel ξ = 0.8, θ = 0◦,
ζ = 0.5 for Fo = 0.5, ω = 0.292 Hz, v0 = 5.89 · 10−4 m/s. It is seen that with decreasing screw width the
function ϑ increases, but with different behavior of monotonicity.

Fig. 12 illustrates the dynamic effect of “scanning” when a narrow screw of relative width ∆0 = ε − ε0
moves from the axis of the channel to its surface, with ε = ε1 + 0.5∆0, ε0 = ε1 − 0.5∆0.

The calculations are performed for the same point of the channel and with the same kinematic parameters
as in the previous figure. From this illustration it is seen that at periodic moments of time when the surface
of the screw is near the observation point, the amplitude of the influence function sharply increases. The
general trend is that when the screw is placed closer to the surface of the channel, the function ϑ increases.
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Fig. 10. The dependence of the influence function ϑ on Fourier number Fov corresponding to the flow rate of the
substance v0 at the point ξ = 0.8, θ = 0◦, ζ = 0.5 for Fo = 0.5, ϕ0 = 73.68◦, ω = 0.292 Hz (Fo0 = 0.0135) and

R2 = 0.009 m

Fig. 11. The dependence of temperature on parameter ε0 (a) and ε (b) at the point ξ = 0.8, θ = 0◦, ζ = 0.5 for
Fo = 0.5, ϕ0 = 73.68◦, ω = 0.292 Hz, v0 = 5.89 · 10−4 m/s

Let us now analyze the influence of the ratio of the pitch and the outer diameter of the screw on the
temperature field in the channel. Some practitioners claim that large diameter screws are relatively more
efficient to transport than small ones (Henan Pingyuan Mining Machinery, 2015). It has also been found
that short-pitch screws feed only a small volume of material per revolution, whereas long-pitch screws
tend to rotate the material rather than transfer it in the axial direction (Carleton et al., 1969). Bortolamasi
and Fottner (2001) reported that the minimum pitch in the screws should be at least one half of the
screw diameter, while the maximum pitch should be approximately equal to one screw diameter. Similarly,
Evstratov et al. (2015) concluded that the pitch should not be less than 0.9 and not more than 1.5 times
the outer diameter of the screw. Martelli (1983) argues that the ratio of pitch to screw diameter equal to
one (known as standard flight) has been also chosen as one of the simplest and optimal options in single-
screws and that it is the most common in industrial practice (see also: Carleton et al., 1969; Campuzano
et al., 2019). These views on the problem indicate that it is urgent to solve the problem of optimizing the

https://journals.pan.pl/cpe 131



S. Ledakowicz, O. Piddubniak, Chem. Process Eng., 2021, 42 (2), 119–137

Fig. 12. The dependence of temperature on parameter ε1 at the point ξ = 0.8, θ = 0◦, ζ = 0.5 for ϕ0 = 73.68◦,
ω = 0.292 Hz, v0 = 5.89 · 10−4 m/s

geometric parameters of the screw in terms of efficiency of the screw system in general. Here we will only
illustrate how the change in the screw pitch affects the temperature distribution in the channel.

Fig. 13 shows the change in the influence function ϑ in the axial direction of the channel when changing
the angle of rise of the screw. The following parameters and variables are selected here: ξ = 0.8, θ = 0◦,
0 ≤ |ζ | ≤ 4, Fo = 0.5, ε = 0.962, ε0 = 0.346, ω = 0.292 Hz, v0 = 5.89 · 10−4 m/s. It is obvious that
with increasing this angle, the temperature level will increase due to the increase in the number of turns of
the screw per running meter of the channel. The convergence of the interference bands, which is observed
with increasing ϕ0, illustrates the decrease of the screw pitch.

Fig. 13. The instantaneous time (Fo = 0.5) dependence of function ϑ along line ξ = 0.8, θ = 0◦, 0 ≤ |ζ | ≤ 4 on the
angle of rise of the screw ϕ0

4. CONCLUSIONS

The paper presents an exact solution of the problem of temperature field distribution in a circular thermally
insulated channel with mobile homogeneous biomass material under the action of Joule heat, uniformly
distributed on the surface of a shaftless rotating screw of finite width. As a result, the temperature field is
obtained in the form of the product of the energy source determined by the Joule heat and the influence
function, which is represented by the sum of the term proportional to time and the Fourier–Bessel series.

https://journals.pan.pl/cpe132



Analysis of non-stationary temperature field generated by a shaftless screw conveyor heated by Joule–Lenz effect

The influence function depends on the thermodynamic characteristics of the substance, its velocity, inner
and outer radii and pitch of the screw, and also on angular velocity of screw rotation. Each term of the
series contains coefficients in the form of definite integral, which is calculated using the high-precision
Romberg method. The performed analytical studies and numerical calculations taking into account the
parameters of the systems used in real experiments, allow us to draw the following conclusions.

1. The temperature at all points of the channel is determined by the Joule heat, i.e. the temperature increases
in direct proportion to the time of action of the heat source and the coefficient of proportionality depends
on the relative outer and inner radii of the screw. However, it should be borne in mind that the density
of electric force also depends on these radii. Therefore, changing the size of the screw, the current
of the conductor must be adjusted accordingly. Thus, as the radial width of the screw decreases, the
power of the current source must be reduced to remain within the correct reactor temperature level for
a certain period of time.

2. The temperature field,which is globally determined by the Joule–Lenz effect, is formed locally under the
influence of such screw characteristics as angular velocity of rotation, pitch, outer and inner diameters,
and also (to a lesser extent) biomass flow rate. The fine structure of the temperature described by the
influence function does not depend on the intensity of the Joule heating. Mathematically, this function
is described by the superposition of cylindrical harmonics and exponentially attenuating over time
pulses, which together are contained under the integral over the dimensionless radial width of the
screw.

3. By numerical integration, it was found that due to the non-axisymmetry of the heat source, which is
a rotating shaftless screw, the temperature field in the circular channel differs significantly from that
known in the classical literature. Thus, in particular, it was found that the temperature on the isolated
surface of the channel is not a smooth function, but has an oscillatory character (Fig. 2). A detailed
study of the microstructure of the temperature field for a limited period of time showed that this
temperature undergoes sinusoidal amplitude-modulated oscillations (Fig. 3a), and these oscillations
are sawtooth-shaped (Fig. 3b). The period of oscillations, of course, is determined by the angular angle
of rotation of the screw.

4. The study of the influence function at the local level showed that the space-temporal relief of this
function largely reflects the geometry of the screw. In particular, the time amplitude is not a mono-
tonically increasing function, but has a stepwise character. The corresponding dependences on the
angular (Fig. 4) or axial (Fig. 5) coordinates are depicted as periodically placed plateaus with a slowly
varying level. These plateaus are inclined at an angle to the corresponding coordinate lines, which in
turn depends on the angle of the screw relative to the axis of symmetry of the channel. The calculated
dependences of the influence function on time and radial coordinate showed that the temperature dis-
tribution is smooth until the surface of the screw approaches the specified observation point. When
the screw directly approaches the observation point, a plateau abruptly appears, on which this function
again becomes locally smooth.

5. The calculations of the influence function in the transverse radial-angular section (Fig. 6) and the
longitudinal section of the radial-axial (Fig. 7) channel at a fixed time reveal a general trend of
temperature increase in the radial direction away from the axis of symmetry of the channel. In this
case, the local concentration of the temperature field is related to the closest location of the screw
surface to the observation points. The picture changes sharply for the points located on the cylindrical
tubes coaxial with the channel surface (Fig. 8). Here the most noticeable screw shape effect occurs.
The amplitudes of the temperature field in the axial direction have a sawtooth character and along the
surface of such the tubes are placed along the helical trajectories. In the axial direction, the amplitude
of the temperature field has a sawtooth character, and its ridges along the surfaces of such tubes, like
the edge of the auger, are located along spiral trajectories. Increasing the speed of the screw rotation
leads to a general sharp decrease in temperature at a given point (Fig. 9). At the same time, the change
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in the velocity of biomass in the range close to what is practically happening in the screw reactor, does
not significantly affect the change in temperature (Fig. 10).

6. The calculations have shown that if the width of the screw decreases, the amplitude of the influence
function increases (Fig. 11). In this case, if we perform “scanning” with a narrow screw along the radial
direction, then at certain periodic points there will be a burst of the amplitude of the influence function
(Fig. 12), which is also explained by the maximum approach of the screw surface to the observation
point. As the angle of the screw increases, the pitch of the screw decreases, so, naturally, the temperature
level increases. In the axial direction, this it is displayed in the appearance of interference bands, the
width of which corresponds to the variable pitch of the screw (Fig. 13).

SYMBOLS

a thermal diffusivity, m2s−1

Amn(·) amplitude multipliers
b constant value, m−1

cp material specific heat capacity, J kg−1K−1

d pitch of screw, m
Dm(·) intermediate function
Fo Fourier number
Fo* Fourier number corresponding to time τ*
Fo0 Fourier number corresponding to period τ0
Fov Fourier number corresponding to period τv
Fomn(·) Fourier numbers corresponding to partial heat pulses
h thickness of screw, m
h1 width of conductor, m
H (·) Heaviside function
I force of electric current, A
Im(·) modified Bessel function of m-th order
j electric current density of a conductor, A m−2

Jm(·) Bessel function of m-th order
k Fourier transform parameter, m−1

Km(·) McDonald function of the m-th order
m natural number
n natural number
p Laplace transform parameter, s−1

p0 poles of function, s−1

q0 heat source intensity, J s−1m−1

q(·) intensity function of the source, J s−1m−1

qm(·) intensity function of the source, J s−1m−1

Qm(·) intermediate function
r radial variable, m
R0 outer radius of screw, m
R1 radius of cylindrical channel, m
R2 inner radius of screw, m
s variable, m−1

S cross-sectional area of screw, m2

Sm(·) intermediate function
T (·) temperature, K

https://journals.pan.pl/cpe134



Analysis of non-stationary temperature field generated by a shaftless screw conveyor heated by Joule–Lenz effect

T0 initial temperature, K
T∗ temperature, K
U (·) auxiliary function, K
Um(·) auxiliary function, K
v0 linear velocity of medium, m s−1

vM mass flow rate, m s−1

x variable of Cartesian coordinate system
y variable of Cartesian coordinate system
z axial variable, m

Greek symbols
δ(·) Dirac function
δmn Kronecker symbol
ε dimensionless outer radius of screw
ε0 dimensionless inner radius of screw
ε1 additional dimensionless radial coordinate
ζ dimensionless axial variable
∆ dimensionless pitch of screw
∆0 dimensionless width of screw
θ angular variable, degree
λ thermal conductivity, Js−1m−1K−1

µmn roots
ξ dimensionless radial variable
ρ material density, kg m−3

ρ0 resistivity of conductor, Ω·m
τ time, s
τ0 period of rotation of screw, s
τ∗ exsperimental value of time, min
τv time of passage of pitch distance, s
ϕ0 angle of rise of the screw, degree
Φmn(·) intermediate function
Ψmn(·) intermediate function
ω angular velocity of screw, Hz
ωv angular velocity of particle, Hz
ϑ(·) dimensionless influence function

Subscripts
0 initial, index
F Fourier transform symbol
L Laplace transform symbol
m mode number
M index
n mode number
v index
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