Skip to main menu
Scroll to content
PL
|
EN
Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit
https://bibliotekanauki.pl
Search
Browse
About
test
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Author-Date)
Harvard
ACS
ACS (no art. title)
IEEE
Preferences
Polski
English
Language
enabled
[disable]
Abstract
10
20
50
100
Number of results
Tools
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Author-Date)
Harvard
ACS
ACS (no art. title)
IEEE
Link to site
Copy
Journal
Geodesy and Cartography
2021
|
70
|
1
|
Article title
High-resolution soil erodibility K-factor estimation using machine learning generated soil dataset and soil pH levels
Authors
Nurlan Mammadli
,
Magsad Gojamanov
,
Nurlan Mammadli
,
Magsad Gojamanov
Content
Full texts:
Download
Download
Download
Title variants
PL
High-resolution soil erodibility K-factor estimation using machine learning generated soil dataset and soil pH levels
Languages of publication
EN
Abstracts
Keywords
EN
soil erodibility
RUSLE
SoilGrids
K factor
soil pH
PL
Nauki Techniczne
Publisher
Polska Akademia Nauk
Journal
Geodesy and Cartography
Year
2021
Volume
70
Issue
1
Physical description
Contributors
author
Nurlan Mammadli
author
Magsad Gojamanov
author
Nurlan Mammadli
author
Magsad Gojamanov
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.oai-journals-pan-pl-120363
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.