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1. Introduction

Mining operations carried out underground disturb the original
state of stress and strain, which may lead to negative effects
on the ground surface in the form of deformations. These can
include extensive continuous subsidence trough, local disconti-
nuities in the form of faults, sinkholes, cracks, etc. and ground
vibrations resulting from the release of energy during the re-
laxation of the rock mass layers. The first group of effects is
of a continuous and static nature and is described with the use
of deformation indices (the index of horizontal ground strain ε ,
the tilt index T , and the curvature radius R). On the other hand,
mining seismic events, which generate additional inertial forces,
are dynamic phenomena and are most commonly described by
means of ground vibrations parameters: the peak ground accel-
eration (PGA) and peak ground velocity (PGV) [1].

From the standpoint of safety analysis of buildings and struc-
tures, these effects, in each of the forms listed, are manifested
as kinematic forces on the supports of a structure, causing an
additional state of effort in its structural elements and gener-
ating deformations of the system as a whole [2–4]. They may
thus pose a potential danger with regard to the safety or the
usability of building structures in the neighbourhood of mines.
For this reason, European mines conduct permanent monitor-
ing of areas subject to the negative impact of mining opera-
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tions, with regard both to anthropogenic seismic phenomena
(mining seismic events – geophysical monitoring) and to con-
tinuous and discontinuous ground deformations (survey moni-
toring). The measurement data serve as a basis for the creation,
calibration or updating of predictive models of these phenom-
ena, and are used by mines to evaluate the potential impacts of
their operations.

The focus of this study is the analysis of a variation in hori-
zontal ground displacements u(x,y) arising as a result of under-
ground mining work.

2. Variation in horizontal ground deformations –
a case study

Horizontal displacements are a very important element in the
model description of ground deformation. They are particularly
significant for the evaluation of dangers to building structures.
As a parameter describing a static phenomenon progressing
over time and being dependent on the degree of mining extrac-
tion, this effect has come to be treated as a stochastic process.
Unfortunately, the methods used globally for predicting sur-
face deformations caused by underground mining operations, in
both qualitative and quantitative terms, provide a good descrip-
tion of the degree of subsidence only, and are inadequate for the
parameter of horizontal displacement [5–7]. This leads to erro-
neous determination of the index of horizontal deformations of
the ground surface. This is an extremely significant problem,
since most of the negative effects of mining operations on build-
ing structures are caused by horizontal strain of the ground (ε),
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being partial derivatives of the horizontal displacement function
u(x,y). For this reason, the authors consider it to be of great im-
portance to address the problems relating to the real values of
the field of horizontal displacements and to attempt to give an
individual description of that field.

2.1. Case study. Observations of changes in the pattern of
horizontal displacements and their values for sample under-
ground mines [5,9] have revealed a need for further study of the
formation of the field of horizontal displacements in the region
of such mines. The authors performed analyses for a sample
German underground mine – Prospel–Haniel [8]. In the region
analysed, mining operations were carried out at wall no. 698 in
the seam O/N at the average depth of H = 960 m. The length
of the production face was 270 m, panel length 970 m and the
height – from 3.6 m to 4.3 m [7]. The seam was dipping towards
the south-west at the angle of 7◦. On the surface, the competent
services made measurements of both subsidence and horizontal
displacements for a database covering 48 measurement points
using the GPS satellite technology . The locations of the indi-
vidual measurement points and the longwall panel face advance
in relation to measurements time (from no.0 to no.17) are pre-
sented in Fig. 1. Exploitation in longwall panel started in early
May 1999 and was completed by the end of November 1999,
while the measurements started in early April 1999 and end in
January 2000.

Fig. 1. Location of observation points with respect to wall no. 698 at
the Prospel–Haniel mine [8]

Initial analysis showed a certain systematic regularity in the
distribution of the resultant vector of horizontal ground dis-
placements u(x,y) registered at all measurement points. Reg-
ularity was detected in the trajectory traced by successive mea-

sured vectors of horizontal displacements relative to the sta-
bilised reference points R( j)

e f as the worked face (wall no. 698)
progressed (Figs. 2 and 3).

Fig. 2. Graphical presentation of registered values of component
horizontal displacements [mm] at all measurement points (from

R0
e f to R22

e f )

Fig. 3. Graphical presentation of registered values of component
horizontal displacements [mm] at all measurement points (from

R23
e f to R47

e f )

In the great majority of cases, this trajectory was close to an
elliptical shape. This fact suggested to the authors the possibil-
ity of approximating the registered displacements u(x,y) with
elliptical functions. This facilitated making a precise statement
of an initial thesis for further research, namely that the field of
horizontal displacements u(x,y) may be described in a domain
of parameters corresponding to the distance of longwall panel
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run, the depth of mining, the thickness of the seam, and the rel-
ative location of the point on the ground surface with respect to
the outline of the excavations.

3. Research methodology

Algorithms for the fitting of elliptical functions are used in an
extremely wide range of fields. Currently, they are predomi-
nantly used for pattern recognition. This includes both static
and dynamic problems in terms of detection of objects in real
time. In static problems the main criterion is the accuracy of
fitting and the effectiveness in terms of the number of correctly
detected objects based on analysis of photographs [10]. In dy-
namic problems, there is an additional important requirement
relating to the algorithm’s speed. This is a key parameter that
determines the effectiveness of a given approach for permanent
monitoring of a group of objects in real time [11]. A broader
description of applications may be found in, e.g. [12, 13].

The addressed problem relating to the fitting of elliptical
functions to measured component values of the field of horizon-
tal ground displacements (ux, uy) was considered to be a static
problem. This view is clearly supported by the rate at which
these effects appear at the ground surface. Hence, in seeking
a suitable approximation algorithm, the sole fundamental crite-
rion considered was the accuracy of fit of an elliptical function
to the registered data, not the real-time speed of the algorithm
(Fig. 4).

Fig. 4. Schematic diagram showing the scope of the analyses described
in this article (stage 1) and further planned research (stages 2 and 3)

Based on the survey of available algorithms given in [14],
two main approaches were selected for comparison. The first
of these is based on the use of the algebraic error in the min-
imisation process. Here the direct least squares fitting (DLSF)

approach was applied, as described in [15]. In the second case,
inspired by [16], the objective function used for the minimi-
sation process was a measure of the geometric error. For this
approach, apart from the genetic algorithm (GA) proposed
in [16], the tests also included the method known as particle
swarm optimisation (PSO) [17–20] and the differential evolu-
tion (DE) algorithm [21]. All of these approaches are classi-
fied as derivative-free optimisation (DFO) methods [22], which
avoid stacking the optimisation process at a local minimum,
thereby increasing the chance of attaining a global minimum.
The choice of the aforementioned optimisation methods was
partly motivated by the authors’ experiences with the use of ge-
netic algorithms (GA) for the problem of optimum selection of
hyperparameters for the support vector machine (SVM) method
from a regression standpoint [23, 24].

All analyses were performed in a Python language environ-
ment. The following libraries were used in the computations:
distributed evolutionary algorithms in Python (DEAP) [25,26],
Mystic [27, 28], and least squares fitting of ellipses – Python
routine [29] based on [15].

3.1. Direct least squares fitting approach to approximating
ellipses to data. The study used the direct least squares fitting
(DLSF) procedure described in [15]. This is a modification of
the procedure determined by Fitzgibbon et al. [30].

Consideration is first given to a general quadratic form rep-
resenting an arbitrary conic:

F(x,y) = x2 +bxy+ cy2 +dx+ ey+ f = 0, (1)

where a, b, c, d, e, f are the coefficients of the quadratic form
representing a conic, and (x, y) are the coordinates of a point
lying on the conic.

To ensure that Eq. (1) describes an ellipse, the following con-
dition must be imposed on the coefficients b, a and c:

b2 −4ac < 0 . (2)

In this formulation, the function F(x,y) given by Eq. (1)
subject to condition (2) is an ellipse. Moreover, the function
F(x,y) represents what is called an algebraic distance, such that
F(x,y) = 0 for points with coordinates lying on the ellipse, and
F(x,y) �= 0 for other points. Hence, in the procedure described,
this function is treated as an error, and its square value serves
as the objective function for minimisation by the Least Squares
method.

Following [15], it is possible to group the coefficients and
coordinates appearing in Eq. (5) and to present them in the fol-
lowing disjoint vector form:

a =
[
a,b,c,d,e, f

]T
, (3)

x =
[
x2,xy,y2,x,y,1

]
. (4)

Thus, Eq. (1) may be written in vector form as:

Fa(x) = x ·a = 0 . (5)
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Next, having the set of data (xi,yi), i = 1, . . . ,N, the general
criterion for the minimisation procedure may be formulated as:

min
a

n

∑
i=1

F(xi,yi)
2 = min

a

n

∑
i=1

Fa(xi)
2 =

= min
a

n

∑
i=1

(xi ·a)2. (6)

To ensure that the parameters (3) determined by the minimi-
sation process satisfy the requirement of (2) – that is, to de-
fine a special case of a conic section strictly for an ellipse –
the domain of considered parameters must be extended to in-
clude Lagrange multipliers, λ �= 0, using a typical approach
as for minimisation problems with constraints. We thus obtain
a more specific form of the criterion function, in the form of
a Lagrangian:

L(xi,a,λλλ ) =
n

∑
i=1

(xi ·a)2 −λλλ
(
aT C a−1

)
, (7)

where:

C =




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




is the constraint matrix enforcing condition (6) for the vector
representation of coefficients a (2) of the quadratic form (1).

Equation (7) may be reduced, with respect to the data (xi,yi),
i = 1, . . . ,N, to the form:

L(xi,a,λλλ ) = ‖D ·a‖2 −λλλ
(
aT Ca−1

)
, (8)

where

D =




x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xiyi y2
i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1




is a design matrix with dimensions N ×6.
Determining the components of the gradient for the La-

grangian (8) with respect to the sought parameters of vector
a and the Lagrange coefficients λ , we obtain the following set
of equations:

∇a,λλλ L(xi,a,λλλ ) =
{

∂L
∂a

,
∂L
∂λλλ

}
=

{
Sa = λλλCa a)

aT Ca = 1 b)

}
, (9)

where

S = DT D =




x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...

x2
i xiyi y2

i xi yi 1
...

...
...

...
...

...

x2
N xNyN y2

N xN yN 1




is a 6×6 scatter matrix.
In the original approach proposed in [30], the next stage is to

solve the generalised eigenproblem (9a), leading to a set of six
solutions {λ j, a j}. The decision on the final solution is made
based on the obtained value of λ j. From the equations of the
originally formulated problem (6), using the transformations
appearing in the formulae (8) and (9a, b), one obtains a reduced
form supporting the choice of a minimum value of λ from the
set of all values obtained when solving the generalised eigen-
problem (9a). These transformations take the following form:

min
a

n

∑
i=1

(xi ·a)2 = min
a

‖D ·a‖2 = min
a

aT DT D a =

= min
a

aT S a = min
a,λλλ

λλλaT C a = min
λλλ

λλλ . (10)

However, in [15] an analysis was made of the original pro-
cedure and a modification was proposed. The reasoning given
referred to the instability of the solution proposed in [30]: in
view of the singularity of the matrix C and the near-singularity
of the matrix S, inappropriate results are generated (infinite val-
ues or complex numbers). It was also shown that the claim sup-
ported by Eq. (14), indicating the existence of only one solution
corresponding to the minimum eigenvalue λ , is erroneous.

To eliminate from the original formulation the singularity of
the matrices C and S, which results from the introduction of the
matrix D (9), it is proposed in [15] to divide the matrix D into
two parts: the first containing all linear elements, and the other
all second-order elements. That matrix finally takes the form:

D = (D1|D2) , (11)

where

D1 =




x2
1 x1y1 y2

1
...

...
...

x2
i xiyi y2

i
...

...
...

x2
N xNyN y2

N




is the component matrix following decomposition, with second-
order elements,
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D2 =




x1 y1 1
...

...
...

xi yi 1
...

...
...

x2
N yN 1




is the component matrix following decomposition, with linear
elements.

This operation results in a division of the matrix S, in corre-
spondence with the separated parts of the matrix D (12). A sim-
ilar procedure is performed for the matrix C (13) and the vector
of parameters a (14).

S =

(
S1 S2

ST
2 S3

)
, (12)

where
S1 = DT

1 D1 ,

S2 = DT
1 D2 ,

S3 = DT
2 D2 ,

C =

(
C1 0
0 0

)
, C1 =

(
1 2
−2 0

)
, (13)

a =

(
a1

a2

)
, a1 =




a
b
c


 , a1 =




d
e
f


 . (14)

By making the above modifications, the final form of Eq. (9a)
is obtained in the following block representation:

(
S1 S2

ST
2 S3

)(
a1

a2

)
= λ

(
C1 0
0 0

)(
a1

a2

)
. (15)

The matrix system in the form (15) may be presented as:

{
S1a1 +S2a2 = λC1a1,

ST
2 a1 +S3a2 = 0.

(16)

By making further transformations, following [15], one may
obtain the following set of equations:




Ma1 = λa1

aT
1 C1a1 = 1

a2 =−S−1
3 ST

2 a1

, (17)

where after the transformations M = C−1
1

(
S1 −S2S−1

3 ST
2
)

is
the reduced scatter matrix.

The system of algebraic equations in the form (17) is equiva-
lent to that of (9). The solution is thus a vector 1 resulting from
the solution of the eigenproblem and satisfying the algebraic
equality constraints in (17). The procedure proposed in [15]

leads to a unique solution in a single stage, and does not require
an iterative approach based on the minimisation of a specified
objective function.

The results of a fitting process with the use of the proposed
procedure are also given in [15], serving to prove the correct-
ness of the adopted solution. These results, illustrating the fit
of an ellipse to the generated points, were key in the choice of
this methodology for further study. This concerns particularly
those cases where there was shown to be an agreement in el-
lipse determination for points distributed on the edge of ellipses
contained in the range 0◦ ≤ ϕ ≤ 60◦. This was highly signifi-
cant because the registered data relating to the components of
the field of displacements u(x,y), corresponding to successive
phases of ground deformation related to the progress of mine
working, often indicated only a section of the edge of a poten-
tial ellipse, and did not cover an angle greater than ϕ = 180◦

(Figs. 2 and 3). Hence, in the authors’ view, this method may
be an effective tool for analysing the field of horizontal dis-
placements u(x,y) at an early stage of the appearance of effects
on the ground surface resulting from underground mining oper-
ations.

3.2. Derivative-free optimisation (DFO) approach to fitting
ellipses to data. Apart from the fitting of ellipses based on the
least squares method, an approach in which the minimisation of
the criterion function was based on derivative-free optimisation
(DFO) was also tested. One of the reasons for the choice of this
approach was the experience of the authors in applying DFO
as a meta-heuristics for the calibration of hyperparameters in
SVM models, in connection with the protection of mining ar-
eas development [3,24]. A second reason was an apparent anal-
ogy between the problem at hand and the approach described
in [16]. In that work, a comparison was made between the re-
sults of applying the least squares method and optimisation us-
ing genetic algorithms in a problem involving the fitting of el-
lipses to data. However, it was noted that there was a dissim-
ilarity regarding the data. The analyses in [16] were based on
the data whose radial spread covered a full angle of ϕ = 360◦.
On the other hand, the problem addressed in the present work
concerns the fitting of ellipses to data spread over an angular
range that frequently does not exceed a value of ϕ = 180◦.

Hence, with a view to expanding the research methodology,
it was decided to investigate whether the fitting of ellipses using
derivative-free optimisation (DFO) at an early stage of the de-
velopment of the field of horizontal ground displacements (ux,
uy) caused by underground mining operations is more effective
than the least squares approach.

Finally, having available literature data relating to the use of
optimisation algorithms classified as DFO methods in problems
involving the fitting of ellipses to data [31, 32], it was decided
to further investigate the use of genetic algorithms (GA), differ-
ential evolution (DE) and particle swarm optimisation (PSO).

In contrast to the method of least squares, where the func-
tion subject to minimisation was an algebraic distance [15], in
analyses using DFO methods the criterion function is the geo-
metric distance (Fi) between the fitted ellipse and the recorded
data (Fig. 5).
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ing genetic algorithms in a problem involving the fitting of el-
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the data whose radial spread covered a full angle of ϕ = 360◦.
On the other hand, the problem addressed in the present work
concerns the fitting of ellipses to data spread over an angular
range that frequently does not exceed a value of ϕ = 180◦.

Hence, with a view to expanding the research methodology,
it was decided to investigate whether the fitting of ellipses using
derivative-free optimisation (DFO) at an early stage of the de-
velopment of the field of horizontal ground displacements (ux,
uy) caused by underground mining operations is more effective
than the least squares approach.

Finally, having available literature data relating to the use of
optimisation algorithms classified as DFO methods in problems
involving the fitting of ellipses to data [31, 32], it was decided
to further investigate the use of genetic algorithms (GA), differ-
ential evolution (DE) and particle swarm optimisation (PSO).

In contrast to the method of least squares, where the func-
tion subject to minimisation was an algebraic distance [15], in
analyses using DFO methods the criterion function is the geo-
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Fig. 5. Graphical interpretation of the criterion function for an optimi-
sation process, in the form of a geometric distance between the point
pi and the fitted ellipse in the system related to the location of the j-th

measurement position R( j)
e f

The geometric distance (Fi) is determined beginning with the
parametric description of an ellipse in the form [16]:

(
ux

uy

)
=

(
uo

x

uo
y

)
+

(
cosα −sinα
sinα cosα

)(
acosα
bsinα

)
, (18)

where ux is the x axis of the system determined by the location
of the measurement point R( j)

e f ; uy is the y axis of the system

determined by the location of the measurement point R( j)
e f ; uo

x
is the x coordinate of the centre of the ellipse in the system
(ux,uy); and uo

y is the y coordinate of the centre of the ellipse in
the system (ux,uy).

Taking the vector r of target parameters of the ellipse in the
form (19), as in [16], the geometric distance may be presented
as a function of the vector r and written in the form (20):

r =
(
a,b,uo

x ,u
o
y ,α

)T
, (19)

Fi (r) = ‖di (r)−ci (r)‖ , (20)

where

di(r) =

∥∥∥∥∥

(
ui

x −uo
x

ui
y −uo

y

)∥∥∥∥∥ – for interpretation see Fig. 6,

ci(r) =

∥∥∥∥∥

(
cosα −sinα
sinα cosα

)(
acosϕi

bsinϕi

)∥∥∥∥∥ – for interpre-

tation see Fig. 7.
Finally, considering all the recorded data (m) for the mea-

surement points R( j)
e f , the criterion function for minimisation

may be written in the form:

G(r) =
m

∑
i=1

Fi(r)2 → min . (21)

Fig. 6. Graphical interpretation of the function di(r)

Fig. 7. Graphical interpretation of the function ci(r)

For each of the implemented algorithms, an upper bound was
determined for the ellipse radii (a and b), using information
contained in the data on the registered values of components
of the field of displacements (ux, uy). For each set of data corre-
sponding to a given registering location, the radii of curvature
R were estimated according to Eq. (22) and the scheme shown
in Fig. 8 For this purpose, the equations of the finite differen-
tial method were adapted to the second derivative according
to [33, 34]. Considering n registrations of components of the
field of horizontal displacements (ux, uy) determined for a given
measurement position, a fit of the radius of curvature R was per-
formed for each triple of consecutive points (i, i+ 1, i+ 2). In
each case this gave n−2 estimated values of R. In view of the
different values of the ellipse radii (a and b), from the resulting
set of estimated radii of curvature {R1,R2, . . . ,Rn−2} the largest
value was selected as the upper bound for the fitted ellipse radii
(a and b) in the optimisation process.

d2ut
y

dut
x

2

∣∣∣∣∣
pi+1

≈
−2 ut

y
∣∣

pi+1

L1L2
≈ 1

Ri+1
, (22)
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where after the transformations:
ut

x – temporal x coordinate according to Fig. 8;
ut

y – temporal y coordinate according to Fig. 8;
pi+1 – (i+1)-th point from the set of records of components

of the field of displacements (ux, uy) for the measurement
point R( j)

e f ;
L1, L2 – lengths of segments determined according to the

adopted differential scheme (cf. Fig. 8);
Ri+1 – the estimated radius of curvature at pi+1.

Fig. 8. Graphical interpretation of the function di(r)

Genetic algorithms (GA) belong to the class of derivative-
free optimisation (DFO) methods. In general, they involve iter-
ative searching of a space of potential solutions with the aim of
satisfying a set optimisation criterion. The number of iterations
is predetermined and is referred to as the number of genera-
tions (ngen). The values of the parameters subject to optimisa-
tion are coded and represented in zero-one notation. The numer-
ical form coded in this way is called a chromosome, and the in-
dividual components of such a sequence are treated as genes. In
this way, crossover and mutation operations can be performed.
These operations are the basis for the action of the genetic algo-
rithm and are performed on elements of a pre-generated set of
potential solutions, known as the population. Within each gen-
eration, the products of crossover and mutation operations are
selected according to a preselected optimisation criterion [35].
In the subsequent generation, this leads to the selection of a new
population to which analogous transformations are applied un-
til the value of the criterion function reaches an acceptable level
or the predefined limit on the number of generations.

In addition, depending on the formulation of the optimisa-
tion problem, genetic algorithms may be applied to problems
which contain one criterion function (single-objective optimi-
sation problems) or many equivalent functional criteria (multi-
criterial optimisation problems or multi-objective optimisation
problems).

The analysis was carried out in a Python language environ-
ment using the distributed evolutionary algorithms in Python
(DEAP) library [25, 26].

The parameters being found were the ellipse radii (a,b), the
coordinates of the centre of the ellipse

(
uo

x ,u
o
y
)

in a local sys-
tem with respect to the coordinates of a given measurement po-
sition, and the angle α of rotation of the ellipse about its centre
(Figs. 5–7).

As noted at the beginning of Section 4, the values of the el-
lipse radii (a and b) were bounded above by the value of the
maximum radius of curvature R resulting from the analysis of
the recorded component displacements (ux, uy) at a given mea-
surement position. The remaining parameters – the coordinates
of the centre of the fitted ellipse

(
uo

x ,u
o
y
)

and the angle α – were
not subject to any constraining conditions.

The fact of the bounding of the ellipse radii (a and b) was
a criterion determining the choice of appropriate crossover and
mutation operations for the genetic algorithm because it was
in the operation of these processes, these were considered dur-
ing the optimisation. For the crossover operation the method of
simulated binary crossover with constraints was selected, and
for the mutation procedure the method of polynomial mutation
with constraints. Both methods are implemented in the DEAP
library [25,26] and are analogous to methods of the widely used
NSGA-II (non-dominated sorted genetic algorithm) [35].

Differential evolution (DE) method is classified as an evo-
lutionary optimisation algorithm (EOA) [36]. From a proce-
dural standpoint, this approach is very similar to the optimi-
sation typical of genetic algorithms (GA). Nonetheless, there
are cases reported in the literature which indicate the advantage
of DE over other gradient-free optimisation methods, including
GA [21, 36–38].

The most important difference between DE and GA is the
way in which the values of the optimised variables (parameters)
are represented. In the case of genetic algorithms, the values
of the parameters are usually coded as sequences of zeros and
ones. In the DE method, however, all operations are performed
on real values. This fundamental difference means that DE is
well suited to the solution of problems in which optimisation
takes place with respect to parameters belonging to the domain
of real numbers.

At the first stage, as in the case of genetic algorithms, the
initial population is determined as a set of N vectors, represent-
ing the list of parameters subject to optimisation. The particular
values of these parameters for each vector in the initial popu-
lation are initialised in a random manner, with the possibility
of simultaneously taking account of lower and upper bounds on
the permissible values of each of them [21].




P0 = Xi,0

Xi,0 = x j,i,0

i = 1, . . . ,NP j = 1, . . . ,D

, (23)

where P0 is the initial population; Xi,0 is the i-th vector of pa-
rameters in the initial population; x j,i,0 is the j-th component of
the i-th vector of parameters in the initial population.

The next stage involves a simultaneous operation of mutation
and crossover, based on the previously selected set of the initial
population P0. This is a self-referential operation, and applies
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where after the transformations:
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x – temporal x coordinate according to Fig. 8;
ut

y – temporal y coordinate according to Fig. 8;
pi+1 – (i+1)-th point from the set of records of components

of the field of displacements (ux, uy) for the measurement
point R( j)

e f ;
L1, L2 – lengths of segments determined according to the

adopted differential scheme (cf. Fig. 8);
Ri+1 – the estimated radius of curvature at pi+1.

Fig. 8. Graphical interpretation of the function di(r)
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tions (ngen). The values of the parameters subject to optimisa-
tion are coded and represented in zero-one notation. The numer-
ical form coded in this way is called a chromosome, and the in-
dividual components of such a sequence are treated as genes. In
this way, crossover and mutation operations can be performed.
These operations are the basis for the action of the genetic algo-
rithm and are performed on elements of a pre-generated set of
potential solutions, known as the population. Within each gen-
eration, the products of crossover and mutation operations are
selected according to a preselected optimisation criterion [35].
In the subsequent generation, this leads to the selection of a new
population to which analogous transformations are applied un-
til the value of the criterion function reaches an acceptable level
or the predefined limit on the number of generations.

In addition, depending on the formulation of the optimisa-
tion problem, genetic algorithms may be applied to problems
which contain one criterion function (single-objective optimi-
sation problems) or many equivalent functional criteria (multi-
criterial optimisation problems or multi-objective optimisation
problems).

The analysis was carried out in a Python language environ-
ment using the distributed evolutionary algorithms in Python
(DEAP) library [25, 26].

The parameters being found were the ellipse radii (a,b), the
coordinates of the centre of the ellipse
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in a local sys-
tem with respect to the coordinates of a given measurement po-
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As noted at the beginning of Section 4, the values of the el-
lipse radii (a and b) were bounded above by the value of the
maximum radius of curvature R resulting from the analysis of
the recorded component displacements (ux, uy) at a given mea-
surement position. The remaining parameters – the coordinates
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and the angle α – were
not subject to any constraining conditions.

The fact of the bounding of the ellipse radii (a and b) was
a criterion determining the choice of appropriate crossover and
mutation operations for the genetic algorithm because it was
in the operation of these processes, these were considered dur-
ing the optimisation. For the crossover operation the method of
simulated binary crossover with constraints was selected, and
for the mutation procedure the method of polynomial mutation
with constraints. Both methods are implemented in the DEAP
library [25,26] and are analogous to methods of the widely used
NSGA-II (non-dominated sorted genetic algorithm) [35].

Differential evolution (DE) method is classified as an evo-
lutionary optimisation algorithm (EOA) [36]. From a proce-
dural standpoint, this approach is very similar to the optimi-
sation typical of genetic algorithms (GA). Nonetheless, there
are cases reported in the literature which indicate the advantage
of DE over other gradient-free optimisation methods, including
GA [21, 36–38].

The most important difference between DE and GA is the
way in which the values of the optimised variables (parameters)
are represented. In the case of genetic algorithms, the values
of the parameters are usually coded as sequences of zeros and
ones. In the DE method, however, all operations are performed
on real values. This fundamental difference means that DE is
well suited to the solution of problems in which optimisation
takes place with respect to parameters belonging to the domain
of real numbers.

At the first stage, as in the case of genetic algorithms, the
initial population is determined as a set of N vectors, represent-
ing the list of parameters subject to optimisation. The particular
values of these parameters for each vector in the initial popu-
lation are initialised in a random manner, with the possibility
of simultaneously taking account of lower and upper bounds on
the permissible values of each of them [21].
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where P0 is the initial population; Xi,0 is the i-th vector of pa-
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to each of the vectors Xi,0. It entails the modification of the
particular components of the vectors of the initial population
P0 according to Eq. (24). A change is made to the component
x j,i,0 of vector Xi,0, where information may be exchanged with
randomly selected corresponding components {x j,r1,0, x j,r2,0,
x j,r3,0} of three other vectors Xr1,0 Xr2,0 Xr3,0 from the initial
population P0. The occurrence of an event leading to the ex-
change of information, and in consequence an operation of mu-
tation and crossover, is determined by arbitrarily chosen val-
ues of the control parameters F and CR [21]. In effect, after
such a procedure has been carried out for all vectors of the
initial population, a new set is obtained, constituting a collec-
tion of candidates for the population in the next generation:
P′

0 =Ui,0 = u j,i,0. The effectiveness of the modified initial pop-
ulation, and thus the decision concerning its use in a subsequent
iteration is verified at the stage of selection. For this purpose,
the value of the adopted criterion function f (X) is checked, us-
ing Eq. (25).

The process thus formulated is repeated until an acceptable
value of the minimised criterion function f (X) is attained or the
predetermined number of generations is reached.

u j,i,0 =




x j,r3,0 +F
(
x j,r1,0 − x j,r2,0

)

rand j 〈0,1)≤ CR∪ j = k

x j,i,0 otherwise

, (24)

where F is an arbitrarily chosen control parameter F ∈ (0,1〉;
CR is an arbitrarily chosen control parameter CR ∈ 〈0,1〉; k
is a random parameter from the set {1, ...,D} selected ran-
domly at each iteration; r1, r2, r3 are random values from
the set {1, . . . ,NP} excluding the currently considered vector
Xi,0 : r1 �= r2 �= r3 �= i.

Xi,0+1 =

{
Ui,0 if f (Ui,0)≤ f (Xi,0)

Xi,0 else
, (25)

where Ui,0 = u j,i,0 is the i-th vector modified at the mutation
and crossover stage according to (23); Xi,0 = x j,i,0 is the i-th
vector in the initial population P0; Xi,0+1 is the i-th vector of the
population for the subsequent iteration.

Particle swarm optimisation (PSO) is very widely applied
in various branches of science and engineering, including elec-
tronics, biomedicine, transport network design, data classifica-
tion and clustering problems, the design of fuzzy and neuro-
fuzzy controllers, and many others [17].

Optimisation based on a swarm of particles was defined in
[17]. The inspiration behind it were the processes taking place
among herd animals in a natural environment. In essence, the
proposed method provides a procedural implementation of the
emergent phenomenon of collective intelligence displayed in
the behaviours of shoals of fish or flocks of birds [39]. Scientists
also use the term swarm intelligence [40].

Procedurally, the operation of the PSO method entails the
definition of a certain objective function in the space of the pa-
rameters subject to optimisation. In that space a certain number
of particles (also called agents [39]) is placed with random co-

ordinates. The value of the objective function is then computed
at the particles’ locations. After being initiated in this way, the
procedure moves to the next step – the characteristic feature of
the PSO method – in which an adjustment is made to the initial
coordinates for each particle in the swarm. Following [41], this
is done according to Eq. (26):

xi(t +1) = xi(t)+ vi(t +1), (26)

where xi(t) is the i-th component of the position of the particle
at time t, i = 1, . . . ,N; xi(t+1) is the adjusted i-th component of
the position of the particle at time t + 1; i = 1, . . . ,N; vi(t + 1)
is the i-th component of the particle velocity at time t + 1, i =
1, . . . ,N.

vi(t +1) = ω · vi(t)+ψ1R1 [xsi − xi(t)]+

+ψ2R2 [xpi − xi(t)] , (27)

where xsi is the i-th component of the position of the particle
from the neighbourhood of the point x(t) for which the best
value of the criterion function f (x) was obtained according to
the adopted optimisation condition (min/max) in all previous
iterations; xpi is the i-th component of the position of the anal-
ysed particle x(t) for which the best value of the criterion func-
tion f (x) was obtained according to the adopted optimisation
condition (min/max) in all previous iterations; R1,R2 are inde-
pendent parameters with random values in the interval [0, 1]; ω
is the inertia weight constant; Ψ1,Ψ2 are constants known as
acceleration coefficients, regulating the level of individual cog-
nition and interaction between surrounding swarm particles;
vi(t + 1) is the i-th component of the particle velocity at time
t +1, i = 1, . . . ,N.

4. Results of analysis

The analyses were based on a database of registered GPS values
of horizontal ground displacements u(x,y) for 48 points R( j)

e f .
The number of records in the components of horizontal dis-
placements u(x,y) at each reference point R( j)

e f was nR = 19.
Finally, for each reference point, ellipses were fitted to the
recorded data in the manner described in Section 4. The fitting
process involved determining the optimum parameters describ-
ing the ellipse, namely {a,b,uo

x ,u
o
x ,α} – cf. Fig. 5.

In the direct least squares fitting (DLSF) approach, in accor-
dance with [16], optimisation without constraints was applied,
with the objective function taken to be the sum of the squares
of geometric distances, given by Eq. (21). Preliminary analysis
showed that when ellipses were fitted to data spread over an an-
gle no greater than ϕ = 180◦, the optimisation process was un-
bounded, and thus lacked uniqueness. All DFO algorithms led
to unreasonably large values of the parameters describing the
ellipse semi-axes (a,b) (the smaller the error tolerance used in
the optimisation, the larger were these values). To stabilise the
optimisation for DFO algorithms, the information contained in
the data was used, and on that basis, in accordance with Eq. (22)
and Fig. 8, the upper limits were estimated for the values of
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the parameters {a,b}. These values resulted from the analy-
sis of the curvatures in the database of registrations, performed
for each reference point R( j)

e f . The final value to be used in the
calculations was taken to be the maximum radius of the fitted
curve for the measurement data. As a result of this operation,
an optimisation with constraints was determined for each ap-
plied algorithm from the DFO family. This made it possible to
obtain results that could be interpreted in accordance with the
predictions resulting from the physics of the analysed process.

Fig. 10 shows overall results in the form of fitted ellipses for
all of the algorithms analysed. Fig. 9 presents some of them so
as to provide more detail (these are results for the measurement
positions: R(11)

e f and R(30)
e f .

(a)

(b)

Fig. 9. Selected sample results for positions: (a) R(11)
e f ; (b) R(30)

e f

Fig. 10. Graphical presentation of the results of fitting by the methods
GA, DE, PSO and DLSF for data from all measurement points R( j)

e f

As may be observed, the DLSF algorithm leads to the el-
lipses with the smallest semi-axis values a and b. Moreover,
the centre coordinates for particular ellipses fitted by means of
this algorithm are located closest to the data registered at all
positions R( j)

e f . The algorithm itself is numerically stable and
unique. It also has the shortest running time, which in the case
analysed amounted to approximately 5 minutes (the total com-
putation time for the fitting of ellipses for all measurement po-
sitions R( j)

e f .
The results obtained with the use of genetic algorithms (GA),

as with the other DFO algorithms analysed, required signifi-
cantly greater computational resources, as is indicated by the
average time of 95 minutes required to fit ellipses for all mea-
surement positions. In the course of multiple simulations it was
found that this approach is less stable than DLSF, as shown by
the different results obtained depending on the starting popu-
lation, the parameters determining the mutation and crossover
options, the set number of generations (computation cycles),
and the acceptable threshold of the defined objective function.
Moreover, as noted above, for a spread of data that does not
cover a full angle of ϕ = 360◦, but only some part of that range
– in the cases analysed, generally not exceeding ϕ = 180◦ – it
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calculations was taken to be the maximum radius of the fitted
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all of the algorithms analysed. Fig. 9 presents some of them so
as to provide more detail (these are results for the measurement
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e f .
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Fig. 9. Selected sample results for positions: (a) R(11)
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e f

Fig. 10. Graphical presentation of the results of fitting by the methods
GA, DE, PSO and DLSF for data from all measurement points R( j)

e f

As may be observed, the DLSF algorithm leads to the el-
lipses with the smallest semi-axis values a and b. Moreover,
the centre coordinates for particular ellipses fitted by means of
this algorithm are located closest to the data registered at all
positions R( j)

e f . The algorithm itself is numerically stable and
unique. It also has the shortest running time, which in the case
analysed amounted to approximately 5 minutes (the total com-
putation time for the fitting of ellipses for all measurement po-
sitions R( j)

e f .
The results obtained with the use of genetic algorithms (GA),

as with the other DFO algorithms analysed, required signifi-
cantly greater computational resources, as is indicated by the
average time of 95 minutes required to fit ellipses for all mea-
surement positions. In the course of multiple simulations it was
found that this approach is less stable than DLSF, as shown by
the different results obtained depending on the starting popu-
lation, the parameters determining the mutation and crossover
options, the set number of generations (computation cycles),
and the acceptable threshold of the defined objective function.
Moreover, as noted above, for a spread of data that does not
cover a full angle of ϕ = 360◦, but only some part of that range
– in the cases analysed, generally not exceeding ϕ = 180◦ – it
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is necessary to place an additional upper bound on the values of
the semi-axes a and b. It may thus be concluded that all of the
analysed approaches using DFO methods require two stages.
In the absence of bounds, the values of a and b become ab-
surdly high, and the centre coordinates of the fitted ellipses lie
at a great distance from the data. Nonetheless, the approach us-
ing a genetic algorithm (GA), as a method of optimum fitting of
ellipses to data, generates the results closest to those of DLSF
– cf. Figs. 9 and 10.

Similar tendencies to those of the GA case were observed in
the numerical computations using the PSO method. In this case
also, the values of the approximated semi-axes a and b were
greater than those obtained by the DLSF method.

The greatest divergences were obtained for the differen-
tial evolution (DE) algorithm. In spite of multiple simulations
for different parameters determining the initial population, the
number of generations and the procedure for crossover and mu-
tation, no results better than those shown in Fig. 10 were ob-
tained.

The above findings are confirmed by the results obtained for
fitting errors. It may be noted that the average values of the
RMSE (root mean square error) for the DLSF and GA methods
are similar (Table 1). A slightly worse result, though close to
that of GA and DLSF, was obtained for the PSO algorithm. By
far the largest average RMSE was obtained for the DE method,
which confirms the results of the study reported in [42], which
analysed the fitting of ellipses to data lying only within a small
angular range.

Table 1
Average values of RMSE ([mm]) for the fitted ellipses with respect to

data from all measurement positions R( j)
e f

Method of fitting (algorithm)

Genetic Differential Particle swarm Direct least
algorithm evolution optimisation squares fitting

(GA) (DE) (PSO) (DLSF)

25.62 150.32 51.31 31.11

5. Conclusions

In this study, an attempt was made to fit ellipses to measurement
data, namely registrations of components of the field of hori-
zontal ground displacements resulting from progressive work
at the Prospel–Haniel mine.

Three different algorithms were used, divided into two
groups:
• The direct least squares fitting (DLSF) algorithm, using al-

gebraic distance as the error measure.
• Optimisation algorithms belonging to the class of DFO

methods, the objective function being a measure of geomet-
ric distance (genetic algorithm – GA, differential evolution
– DE, particle swarm optimisation – PSO).

The results indicate that when it is necessary to fit ellipses
to data spread over an angle no greater than ϕ = 180◦, the best
method is the DLSF approach.

The remaining algorithms in the DFO class require in this
case a two-stage approach, consisting of:
• Preliminary determination of limiting values for the param-

eters a and b based on the estimation of curvature in the
original data set.

• Optimisation by the selected procedure taking account of
the constraints resulting from the preliminary analysis of
the measurement data.

The initial data constructed in this way for the optimisation
process are nonetheless subject to error, resulting from the non-
uniform distances between the measurement points used to es-
timate the curvature by the finite differential method, among
other things.

In the case of failure to apply an initial constraint to the pa-
rameters a and b, the values obtained for those parameters via
optimisation are unreasonably large. The results cannot then
be subjected to further interpretation in accordance with the
physics of the analysed phenomenon.

A further defect that came to light in the course of multi-
ple simulations is the high sensitivity of the DFO methods to
the initial sets of data (population) and to the parameters deter-
mining the operation of particular components of the optimisa-
tion process (such as the crossover and mutation operations in
the GA method). As a result, the operation of these methods is
characterised by a high degree of inertia and by certain chaotic
features.

Nonetheless, in cases where the data are spread over an angle
of ϕ = 360◦, the DFO algorithms may constitute an alternative
to the DLSF method in ellipse fitting problems.

As regards the required computational resources, expressed
in terms of computation time, the DLSF method is again the
most effective. The average ratio between the time required for
fitting using the DLSF method and the time required by the
other analysed methods was approximately t(DLSF) : t(DFO)
≈ 5 min : 95 min.

To conclude, the direct least squares fitting method was se-
lected for further analysis, having been found to be the most
effective tool for fitting ellipses to measurement data. This
method will be used in further work together with machine
learning methods (ML). The authors plan to construct a model
which will be used in an implicit manner as a random case gen-
erator for the Monte Carlo method [43].
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