ArticleOriginal scientific text

Title

Die Attachment Method on a Cu Finish by Pressure-Assisted Sinter Bonding in Air Using Cu Formate Paste

Authors 1, 1

Affiliations

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea

Abstract

A paste containing Cu(II) formate rods was prepared, and characteristics of sinter bonding at 250°C under a pressure of 10 MPa were investigated to accomplish a high-speed die attachment for wide-bandgap power chips on Cu finish in air. Synthesisn of the plate-type Cu formate particles from CuO was accomplished through a wet reaction for 180 min. Cu, formed in situ in the bondline by pyrolysis of the formate during heating for the attachment, was sufficiently active to lead high-speed sintering within a carbon dioxide-hydrogen atmosphere derived from the pyrolysis, and the oxide layer on the Cu finish was reduced by the hydrogen. As a result, sinter bonding for 10 min formed a robust bonding with a shear strength approaching 27 MPa.

Keywords

die attach, Cu formate paste, sinter bonding, Cu finish, shear strength

Bibliography

  1. T. Wang, X. Chen, G. Q. Lu, G. Y. Lei, J. Electron. Mater. 36, 1333-1340 (2007).
  2. J. G. Bai, J. Yin, Z. Y. Zhang, G. Q. Lu, J. D. van Wyk, IEEE Trans. Adv. Packag. 30, 506-510 (2007).
  3. H. S. Chin, K. Y. Cheong, A. B. Ismail, Metal. Mater. Trans. B41, 824-832 (2010).
  4. P. Ning, T. G. Lei, F. Wang, G.-Q. Lu, K. D. T. Ngo, K. Rajashekara, IEEE Trans. Power Electron. 25, 2059-2067 (2010).
  5. H. A. Mustain, W. D. Brown, S. S. Ang, IEEE Trans. Compon. Packag. Technol. 33, 563-570 (2010).
  6. A. A. Bajwa, J. Wilde, Microelectron. Reliab. 60, 116-125 (2016).
  7. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981-989 (2011).
  8. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306-1322 (2012).
  9. S. W. Yoon, M. D. Glover, K. Shiozaki, IEEE Trans. Power Electron. 28, 2448-2456 (2013).
  10. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Mater. Sci. Eng. A680, 221-231 (2017).
  11. Z. Zhang, G. Q. Lu, IEEE Trans. Electron. Packag. Manuf. 25, 279-283 (2002).
  12. S. Fu, Y. Mei, G.-Q. Lu, X, Li, G. Chen, X. Chen, Mater. Lett. 128, 42-45 (2014).
  13. X. Liu, H. Nishikawa, Scr. Mater. 120, 80-84 (2016).
  14. Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, J. Electron. Mater. 46, 4575-4581 (2017).
  15. S. Kaimori, T. Nonaka, A. Mizoguchi, IEEE Trans. Adv. Packag. 29, 227-231 (2006).
  16. A. Yabuki, N. Arriffin, M. Yanase, Thin Solid Films 519, 6530-6533 (2011).
  17. A. Yabuki, S. Tanaka, Mater. Res. Bull. 47, 4107-4111 (2012).
  18. M. Joo, B. Lee, S. Jeong, M. Lee, Appl. Surf. Sci. 25, 521-524 (2011).
  19. M. Joo, B. Lee, S. Jeong, M. Lee, Thin Solid Films 520, 2878-2883 (2012).
  20. B. Lee, S. Jeong, Y. Kim, I. Jeong, K. Woo, J. Moon, Met. Mater. Int. 18, 493-498 (2012).
  21. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435-442 (2019).
  22. N.-G. Park, K. M. Kim, M. G., Kang, K. S. Ryu, S. H. Chang, Y.-J. Shin, Adv. Mater. 17, 2349-2353 (2005).
  23. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943-1948 (2010).
  24. A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).
  25. J. Sopousek, J. Bursik, J. Zalesak, Z. Pesina, J. Min. Metall. Sect. B-Metall. 48, 63-71 (2012).
  26. J. Ryu, H.-S. Kim, H.T. Hahn, J. Electron. Mater. 40, 42-50 (2011)

Additional information

EN: 1. This study was supported by the Research Program (U2019-0057) funded by the SeoulTech (Seoul National University of Science and Technology). PL: 2. Błędna numeracja bibliografii. PL: 3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Pages:
1057-1061
Main language of publication
English
Published
2020
Engineering and technical sciences