ArticleOriginal scientific text
Title
Die Attachment Method on a Cu Finish by Pressure-Assisted Sinter Bonding in Air Using Cu Formate Paste
Authors 1, 1
Affiliations
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea
Abstract
A paste containing Cu(II) formate rods was prepared, and characteristics of sinter bonding at 250°C under a pressure of 10 MPa were investigated to accomplish a high-speed die attachment for wide-bandgap power chips on Cu finish in air. Synthesisn of the plate-type Cu formate particles from CuO was accomplished through a wet reaction for 180 min. Cu, formed in situ in the bondline by pyrolysis of the formate during heating for the attachment, was sufficiently active to lead high-speed sintering within a carbon dioxide-hydrogen atmosphere derived from the pyrolysis, and the oxide layer on the Cu finish was reduced by the hydrogen. As a result, sinter bonding for 10 min formed a robust bonding with a shear strength approaching 27 MPa.
Keywords
die attach, Cu formate paste, sinter bonding, Cu finish, shear strength
Bibliography
- T. Wang, X. Chen, G. Q. Lu, G. Y. Lei, J. Electron. Mater. 36, 1333-1340 (2007).
- J. G. Bai, J. Yin, Z. Y. Zhang, G. Q. Lu, J. D. van Wyk, IEEE Trans. Adv. Packag. 30, 506-510 (2007).
- H. S. Chin, K. Y. Cheong, A. B. Ismail, Metal. Mater. Trans. B41, 824-832 (2010).
- P. Ning, T. G. Lei, F. Wang, G.-Q. Lu, K. D. T. Ngo, K. Rajashekara, IEEE Trans. Power Electron. 25, 2059-2067 (2010).
- H. A. Mustain, W. D. Brown, S. S. Ang, IEEE Trans. Compon. Packag. Technol. 33, 563-570 (2010).
- A. A. Bajwa, J. Wilde, Microelectron. Reliab. 60, 116-125 (2016).
- V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981-989 (2011).
- G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306-1322 (2012).
- S. W. Yoon, M. D. Glover, K. Shiozaki, IEEE Trans. Power Electron. 28, 2448-2456 (2013).
- H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Mater. Sci. Eng. A680, 221-231 (2017).
- Z. Zhang, G. Q. Lu, IEEE Trans. Electron. Packag. Manuf. 25, 279-283 (2002).
- S. Fu, Y. Mei, G.-Q. Lu, X, Li, G. Chen, X. Chen, Mater. Lett. 128, 42-45 (2014).
- X. Liu, H. Nishikawa, Scr. Mater. 120, 80-84 (2016).
- Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, J. Electron. Mater. 46, 4575-4581 (2017).
- S. Kaimori, T. Nonaka, A. Mizoguchi, IEEE Trans. Adv. Packag. 29, 227-231 (2006).
- A. Yabuki, N. Arriffin, M. Yanase, Thin Solid Films 519, 6530-6533 (2011).
- A. Yabuki, S. Tanaka, Mater. Res. Bull. 47, 4107-4111 (2012).
- M. Joo, B. Lee, S. Jeong, M. Lee, Appl. Surf. Sci. 25, 521-524 (2011).
- M. Joo, B. Lee, S. Jeong, M. Lee, Thin Solid Films 520, 2878-2883 (2012).
- B. Lee, S. Jeong, Y. Kim, I. Jeong, K. Woo, J. Moon, Met. Mater. Int. 18, 493-498 (2012).
- Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435-442 (2019).
- N.-G. Park, K. M. Kim, M. G., Kang, K. S. Ryu, S. H. Chang, Y.-J. Shin, Adv. Mater. 17, 2349-2353 (2005).
- S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943-1948 (2010).
- A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).
- J. Sopousek, J. Bursik, J. Zalesak, Z. Pesina, J. Min. Metall. Sect. B-Metall. 48, 63-71 (2012).
- J. Ryu, H.-S. Kim, H.T. Hahn, J. Electron. Mater. 40, 42-50 (2011)
Additional information
EN: 1. This study was supported by the Research Program (U2019-0057) funded by the SeoulTech (Seoul National University of Science and Technology). PL: 2. Błędna numeracja bibliografii. PL: 3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).