PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 53 | 2 | 127-135
Article title

Ion channels in T cells: from molecular pharmacology to therapy

Authors
Title variants
Languages of publication
EN
Abstracts
EN
Ion channels of a variety of cell types, such as cardiac and smooth muscle cells and neurons, serve as targets for many drugs used in therapy. T cells also express an assortment of ion channels that are in the focus of intensive research, as they may provide efficient ways to specifically manipulate T cell function and, consequently, immune responses. T cell activation relies on the operation of voltage-gated and Ca2+-activated potassium channels and Ca2+ release-activated Ca2+ channels. Many peptide toxin and small molecule blockers of these channels are known, but inhibitors of even higher affinity and selectivity would be needed for safe and effective clinical use. The recent discovery that the expression pattern of potassium channels in T cells is subset specific emphasizes the potential that these proteins have in immunomodulation. Compounds that could suppress T cells involved in autoimmunity without affecting T cells in normal immune responses would be of enormous value. In this paper the basic properties of these channels and compounds known to influence their operation are reviewed.
Keywords
Publisher

Year
Volume
53
Issue
2
Pages
127-135
Physical description
Contributors
author
References
Document Type
REVIEW
Publication order reference
Zoltan Krasznai, Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98., H-4012 Debrecen, Hungary
Identifiers
YADDA identifier
bwmeta1.element.element-from-psjc-cf70dd90-e5d2-3e6d-9081-0f0a1645e48d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.