Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2006 | 54 | 1 | 15-24

Article title

Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27

Title variants

Languages of publication



The functional characterization and subsequent purification of T cell growth factor/interleukin (IL)-2 in the early 1980s established this secreted protein as a key mediator of immune cell activation and provided the prototype that enabled the discovery of numerous cytokines over the ensuing two decades. While soluble immunoregulatory factors were initially identified functionally as biological activities present in the culture supernatants of activated lymphocytes/monocytes, this methodology shifted radically following the completion of the human genome sequence. Computer-generated structural modeling algorithms have replaced functional assays and biochemical purification as the initial means of discovering new cytokines. To date, a total of 31 interleukins, as well as over a dozen other related hematopoietic factors, have been identified. These cytokines and their receptors may be grouped on the basis of structural homologies as well as by shared ligand and receptor subunits. The challenge now at hand is to define the biological functions of the newly identified cytokines and to elucidate the common and divergent roles of related family members. This point is well illustrated by the IL-12/IL-23/IL-27 family, whose members share ligand and receptor subunits and play somewhat overlapping roles in innate and adaptive immune responses. These three cytokines are not entirely redundant, as they may preferentially activate na?ve or memory T cells, induce discrete T cell cytokine profiles, contribute to distinct stages of host immune responses to infectious agents, and differentially promote autoimmunity. Further elucidation of the unique functions of the IL-12 family members may lead to improved immunodiagnostics and therapies.





Document Type


Publication order reference

Mark K. Slifka, Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.