PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 48 | 3 | 163-171
Article title

Beyond a structural component: sphingolipids in immunology

Title variants
Languages of publication
EN
Abstracts
EN
Two major classes of lipids paricipating in signaling cascades in immune cells are known today. One comprises glycerol-based lipids with diacylglycerol as its most prominent member that mediates the activation of classical and novel protein kinase C molecules. The second group contains the sphingolipids, with the best-investigated representatives being sphingosine, sphingosine-1-phosphate, and ceramide. In the last years the latter two molecules have especially received considerable attention for their modulatory capacity in the course of an apoptotic response. Today it is clear that sphingolipids are ubiquitously distributed in all eukaryotic cells, especially in cellular membranes, where they were previously thought to fulfil an exclusively structural role. Recent findings, however, have demonstrated functions beyond this. Sphingolipid specific G-protein coupled receptors were identified and their role as intracellular second messengers has been further elucidated. In addition, glycosphingolipids, in particular, are enriched in certain membrane compartments, known as detergent resistant membranes. These serve as entry sites for several receptor-mediated signaling events by stabilizing receptor/kinase interactions, suggesting an involvement in the initiation of signaling cascades. Altogether, these findings have led to new insights into both the role of these lipids in signaling as well as the underlying pathology of several diseases with imbalances in the sphingolipid metabolism. The development of these disorders has mainly been attributed to the toxic potential of lysosphingolipids up to now. In addition, attempts have been made to develop compounds and drugs containing the sphingolipid backbone for influencing diseases associated with unwanted cell activation (e.g, cancer, inflammatory processes). These novel findings and developments are reviewed in the following.
Publisher

Year
Volume
48
Issue
3
Pages
163-171
Physical description
Contributors
author
author
References
Document Type
REVIEW
Publication order reference
E.E. Prieschl, Department of Immunology, Novartis Research Institute, Brunner Str. 59, A-1235 Vienna, Austria
Identifiers
YADDA identifier
bwmeta1.element.element-from-psjc-626cde0f-984f-3de5-a611-2ae90371cb38
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.