PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2006 | 2 | 49-64
Article title

Enzymatic degradation of acyl-homoserine lactones and its possible use in biocontrol and suppression of infection development

Title variants
Languages of publication
PL
Abstracts
EN
A large number of different bacteria populations control diverse metabolic processes through production and distribution of specific signal molecules, which concentration in the environment depends on bacteria cell density and rise when bacteria population expands. This strategy is known as quorum sensing (QS), and was first described in Gram-negative, marine bacterium Vibrio fischeri. QS, a mechanism of gene expression regulation dependent on bacterial cell density, is widely distributed in Gram-negative bacteria; and controls different physiological processes such as production of virulence factors, conjugal plasmid transfer, antibiotic production, replication, swarming or luminescence. QS functions via signal molecules: in Gram-negative bacteria, the signal molecules belong to the acyl-homoserine lactones (AHLs). It was found that many bacteria possess the ability to interfere in QS (strategy known as quorum quenching- QQ) by enzymatic degradation of AHLs. Till now, two classes of enzymes able to degrade AHLs have been described: AHL-lactonases and AHL-acylases. AHL-lactonases hydrolyze the ester bond in the lactone ring of AHLs. AHL-acylases hydrolyze the amide bond between the acyl side chain and the lactone ring in AHLs. Both reactions lead to the inhibition of signal transfer in QS as degradation products cannot act as signal molecules. QS plays a major role in pathogenesis and as such is deeply studied as a useful target for modern, antimicrobial therapy in human medicine and veterinary, as well as in biocontrol of plant diseases.
Publisher

Journal
Year
Issue
2
Pages
49-64
Physical description
Contributors
author
author
References
Document Type
REVIEW
Publication order reference
Sylwia Jafra, Zaklad Ochrony i Biotechnologii Roslin, Miedzyuczelniany Wydzial Biotechnologii UG-AMG, ul. Kladki 24, 80-822 Gdansk, Poland
Identifiers
YADDA identifier
bwmeta1.element.element-from-psjc-34f83135-ad57-3296-b7b4-45e80e32a5a0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.