Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 67 | 1 | 43-51

Article title

Brain correlates of right-handedness

Selected contents from this journal

Title variants

Languages of publication

EN

Abstracts

EN
Recent development of neuroimaging techniques has opened new possibilities for the study of the relation between handedness and the brain functional architecture. Here we report fMRI measurements of dominant and non-dominant hand movement representation in 12 right-handed subjects using block design. We measured possible asymmetry in the total volume of activated neural tissue in the two hemispheres during simple and complex finger movements performed either with the right hand or with the left hand. Simple movements consisted in contraction/extension of the index finger and complex movements in successive finger-thumb opposition from little finger to index finger. A general predominance of left-hemisphere activation relative to right hemisphere activation was found. Increasing the complexity of the motor activity resulted in an enlargement of the volume of consistently activated areas and greater involvement of ipsilateral areas, especially in the left hemisphere. Movements of the dominant hand elicited large contralateral activation (larger than movements of the non-dominant hand) and relatively smaller ipsilateral activation. Movements of the non-dominant hand resulted in a more balanced pattern of activation in the two hemispheres, due to relatively greater ipsilateral activation. This suggests that the dominant (right) hand is controlled mainly by the contralateral (left) hemisphere, whereas the non-dominant hand is controlled by both left and right hemispheres. This effect is especially apparent during execution of complex movements. The expansion of brain areas involved in motor control in the hemisphere contralateral to the dominant hand may provide neural substrate for higher efficiency and a greater motor skill repertoire of the preferred hand.

Contributors

author
author
author
author
author
author
author
author

References

Document Type

ARTICLE

Publication order reference

Malgorzata Gut, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland

Identifiers

YADDA identifier

bwmeta1.element.element-from-psjc-224e91d6-7dd8-3e40-b9aa-e14c478409fb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.