Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 95-107

Article title

Modyfikacje potranslacyjne tubuliny

Content

Title variants

EN
Tubulin posttranslational modifications

Languages of publication

PL EN

Abstracts

PL
Zarówno wolna tubulina, jak i tubulina wbudowana w mikrotubule może być modyfikowana potranslacyjnie poprzez przyłączenie różnorodnych grup funkcyjnych. Wśród kilkunastu zidentyfikowanych modyfikacji α- i β-tubuliny, przynajmniej niektóre zmiany potranslacyjne, jak acetylacja, detyrozynacja czy glutamylacja są zachowane w toku ewolucji od pierwotniaków do człowieka. Modyfikacje potranslacyjne tworzą specyficzny wzór na powierzchni mikrotubul, nazwany kodem tubulinowym, który jest rozpoznawany i "interpretowany" przez białka oddziałujące z mikrotubulami. W efekcie modyfikacje potranslacyjne tubuliny wpływają zarówno bezpośrednio na właściwości mikrotubul, jak i pośrednio, przez białka towarzyszące mikrotubulom. Poziom modyfikacji potranslacyjnych tubuliny na poszczególnych mikrotubulach jest zróżnicowany i zależy od rodzaju tworzonych struktur mikrotubularnych oraz typu komórek. Dodatkowo, poziom modyfikacji potranslacyjnych tubuliny może zmieniać się zależnie od stadium cyklu komórkowego lub stopnia zróżnicowania komórki. Intensywne badania prowadzone w ciągu ostatnich lat zaowocowały odkryciem kluczowych enzymów modyfikujących α- i β-tubulinę oraz częściowo, mechanizmu ich działania. Nadal jednak jesteśmy dalecy od pełnego zrozumienia roli modyfikacji potranslacyjnych mikrotubul w regulacji procesów komórkowych.
EN
Both, free tubulin and tubulin incorporated into microtubules can be extensively posttranslationally modified. Among numerous identified modifications of α- and β-tubulin, at least some modifications such as acetylation, detyrosination or glutamylation are highly evolutionarily conserved from protists to man. The posttranslational modifications of tubulin form a specific pattern on the microtubule surface, called a tubulin code, that is recognized and interpreted by microtubule interacting proteins. Thus, tubulin posttranslational modifications can affect the microtubule properties, both directly and indirectly, by regulating the interactions with microtubule associated proteins. The level of the tubulin posttranslational modifications vary on different types of microtubules and depends upon the type of the microtubular structures and the cell type. Additionally, the levels of tubulin modifications can change during the cell cycle and cell differentiation. The extensive studies carried out during the last years resulted in a discovery of some of the key enzymes that modify α- and β-tubulin as well as partial understanding of the mechanisms of their action. However, despite all the efforts we are still far from the full understanding of the significance of the microtubule posttranslational modifications in the regulation of cellular processes.

Journal

Year

Volume

67

Issue

1

Pages

95-107

Physical description

Dates

published
2018

Contributors

author
  • Pracownia Białek Motorycznych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Motor Proteins, Department of Biochemistry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
  • Pracownia Białek Motorycznych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Motor Proteins, Department of Biochemistry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland

References

  • Abeyweera T. P., Chen X., Rotenberg S. A., 2009. Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells. J. Biol. Chem. 284, 17648-17656.
  • Adoutte A., Claisse M., Maunoury R., Beisson J., 1985. Tubulin evolution: ciliate-specific epitopes are conserved in the ciliary tubulin of Metazoa. J. Mol. Evol. 22, 220-229.
  • Aillaud C., Bosc C., Peris L., Bosson A., Heemeryck P., Van Dijk J., Le Friec J., Boulan B., Vossier F., Sanman L. E., Syed S., Amara N,. Couté Y., Lafanechère L., Denarier E., Delphin C., Pelletier L., Humbert S., Bogyo M., Andrieux A., Rogowski K., Moutin M. J., 2017. Vasohibins/SVBP are tubulin carboxypeptidases (TCP) that regulate neuron differentiation. Science, doi: 10.1126/science.aao4165.
  • Akella J. S., Wloga D., Kim J., Starostina N. G., Lyons-Abbott S., Morrissette N. S., Dougan S. T., Kipreos E. T., Gaertig J., 2010. Mec-17 is an alpha-tubulin acetyltransferase. Nature 467, 218-222.
  • Arce C. A., Rodriguez J. A., Barra H. S., Caputo R., 1975. Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur. J. Biochem. 59, 145-149.
  • Argarana C. E., Barra H. S., Caputto R., 1978. Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol. Cell. Biochem. 19, 17-21.
  • Audebert S., Koulakoff A., Berwald-Netter Y., Gros F., Denoulet P., Edde B.,1994. Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons. J. Cell Sci. 107, 2313-2322.
  • Baas P. W., Rao A. N., Matamoros A. J., Leo L., 2016. Stability properties of neuronal microtubules. Cytoskeleton 73, 442-460.
  • Barnat M., Benassy M. N., Vincensini L., Soares S., Fassier C., Propst F., Andrieux A., Von Boxberg Y., Nothias F., 2016. The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics. Mol. Cell. Neurosci. 72, 9-21.
  • Berezniuk I., Lyons P. J., Sironi J. J., Xiao H., Setou M., Angeletti R. H., Ikegami K., Fricker L. D., 2013. Cytosolic carboxypeptidase 5 removes α- and γ-linked glutamates from tubulin. J. Biol. Chem. 288, 30445-30453.
  • Bheda A., Gullapalli A., Caplow M., Pagano J. S., Shackelford J., 2010. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: Implication in mitosis. Cell Cycle 9, 980-994.
  • Bosch Grau M., Gonzalez Curto G., Rocha C., Magiera M. M., Marques Sousa P., Giordano T., Spassky N., Janke C., 2013. Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia. J. Cell Biol. 202, 441-451.
  • Bosch Grau M., Masson C., Gadadhar S., Rocha C., Tort O., Marques Sousa P., Vacher S., Bieche I., Janke C., 2017. Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J. Cell Sci. 130, 938-949.
  • Brady S. T., 1993. Axonal Dynamics and Regeneration. [W:] Neuroregeneration. Gorio A. (red.). Raven Press, New York City, 7-36.
  • Brady S. T., Tytell M., Lasek R. J., 1984. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J. Cell Biol. 99, 1716-1724.
  • Bray D., Bunge M. B., 1981. Serial analysis of microtubules in cultured rat sensory axons. J. Neurocytol. 10, 589-605.
  • Bré M. H., Redeker V., Quibell M., Darmanaden-Delorme J., Bressac C., Cosson J., Huitorel P., Schmitter J. M., Rossler J., Johnson T., Adoutte A., Levilliers N., 1996. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J. Cell Sci.109, 727-738.
  • Bressac C., Bré M. H., Darmanaden-Delorme J., Laurent M., Levilliers N., Fleury A., 1995. A massive new posttranslational modification occurs on axonemal tubulin at the final step of spermatogenesis in Drosophila. Eur. J. Cell Biol. 67, 346-355.
  • Burgoyne R. D., Cambray-Deakin M. A., Lewis S. A., Sarkar S., Cowan N. J., 1988. Differential distribution of beta-tubulin isotypes in cerebellum. EMBO J. 7, 2311-2319.
  • Cai D., McEwen D. P., Martens J. R., Meyhofer E., Verhey K. J., 2009. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7, e1000216.
  • Campbell P. K., Waymire K. G., Heier R. L., Sharer C., Day D. E., Reimann H., Jaje J. M., Friedrich G. A., Burmeister M., Bartness T. J., Russell L. D., Young L. J., Zimmer M., Jenne D. E., MacgregoR G. R., 2002. Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice. Genetics 162, 307-320
  • Caron J. M., 1997. Posttranslational modification of tubulin by palmitoylation: I. In vivo and cell-free studies. Mol. Biol. Cell 8, 621-636.
  • Caudron F., Denarier E., Thibout-Quintana J. C., Brocard J., Andrieux A., Fourest-Lieuvin A., 2010. Mutation of Ser172 in yeast β tubulin induces defects in microtubule dynamics and cell division. PLoS One 5, e13553.
  • Chu C. W., Hou F., Zhang J., Phu L., Loktev A. V., Kirkpatrick D. S., Jackson P. K., Zhao Y., Zou H., 2011. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 22, 448-456.
  • Cicchillitti L., Penci R., Di Michele M., Filippetti F., Rotilio D., Donati M. B., Scambia G., Ferlini C., 2008. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol. Cancer Ther. 7, 2070-2079.
  • Coombes C., Yamamoto A., McClellan M., Reid T. A., Plooster M., Luxton G. W., Alper J., Howard J., Gardner M. K., 2016. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. Proc. Natl. Acad. Sci. USA 113, E7176-E7184.
  • Cueva J. G., Hsin J., Huang K. C., Goodman M. B., 2012. Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules. Curr Biol. 22, 1066-1074.
  • De S., Tsimounis A., Chen X., Rotenberg S.A., 2014. Phosphorylation of α-tubulin by protein kinase C stimulates microtubule dynamics in human breast cells. Cytoskeleton 71, 257-272.
  • Dent E. W., 2017. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol. Biol. Cell 28, 1-8.
  • Desai A., Mitchison T. J., 1997. Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol. 13, 83-117.
  • Dompierre J. P., Godin J. D., Charrin B. C., Cordelières F. P., King S. J., Humbert S., Saudou F., 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571-3583.
  • Edde B., Rossier J., Le Caer J. P., Desbruyeres E., Gros F.,Denoulet P., 1990. Posttranslational glutamylation of alpha-tubulin. Science 247, 83-85.
  • Eipper B. A., 1972. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc. Natl. Acad. Sci. USA 69, 2283-2287.
  • Erck C., Peris L., Andrieux A., Meissirel C., Gruber A.D., Vernet M., Schweitzer A., Saoudi Y., Pointu H., Bosc C., Salin P. A., Job D., Wehland J., 2005. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. USA 102, 7853-7858.
  • Ersfeld K., Wehland J., Plessmann U., Dodemont H., Gerke V., Weber K., 1993. Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120, 725-732.
  • Feng J. F., Readson M., Yadav S. P., Im M. J., 1999. Calreticulin downregulates both GTP binding and transglutaminase activities of transglutaminase II. Biochemistry 38, 10743-10749.
  • Fourest-Lieuvin A., Peris L., Gache V., Garcia-Saez I., Juillan-Binard C., Lantez V., Job D., 2006. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 17, 1041-1050.
  • Fukushige T., Siddiqui Z. K., Chou M., Culotti J. G., Gogonea C. B., Siddiqui S. S., Hamelin M., 1999. MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112, 395-403.
  • Gadadhar S., Dadi H., Bodakuntla S., Schnitzler A., Bièche I., Rusconi F., Janke C., 2017. Tubulin glycylation controls primary cilia length. J. Cell Biol. 216, 2701-2713.
  • Giustiniani J., Daire V., Cantaloube I., Durand G., Poüs C., Perdiz D., Baillet A., 2009. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal. 21, 529-539.
  • Guo S., Palanski B. A., Kloeck C., Khosla C., Cui B., 2017. Intracellular TG2 activity increases microtubule stability but is not sufficient to prompt neurite growth. Neurosci. Bull. 33, 103-106.
  • Hallak M. E., Rodriguez J. A., Barra H. S., Caputto R., 1977. Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 73, 147-150.
  • Hasegawa G., Suwa M., Ichikawa Y., Ohtsuka T., Kumagai S., Kikuchi M., 2003. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem. J. 373, 793-803.
  • Hino M., Kijima-Suda I., Nagai Y., Hosoya H., 2003. Glycosylation of the alpha and beta tubulin by sialyloligosaccharides. Zool. Sci. 20, 709-715.
  • Howes S. C., Alushin G. M., Shida T., Nachury M. V., Nogales E., 2014. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 25, 257-266.
  • Ikegami K., Heier R.L., Taruishi M., Takagi H., Mukai M., Shimma S., Taira S., Hatanaka K., Morone N., Yao I., Campbell P. K., Yuasa S., Janke C., Macgregor G. R., Setou M., 2007. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. USA 104, 3213-3218.
  • Ikegami K., Sato S., Nakamura K., Ostrowski L. E., Setou M., 2010. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc. Natl. Acad. Sci. USA 107, 10490-10495.
  • Janke C., 2014. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 206, 461-472.
  • Janke C., Bulinski J. C., 2011. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 12, 773-786.
  • Janke C., Rogowski K., Włoga D., Regnard C., Kajava A.V., Strub J.M., Temurak N., Van Dijk J., Boucher D., Van Dorsselaer A., Suryavanshi S., Gaertig J., Edde B., 2005. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758-1762.
  • Kaul N., Soppina V., Verhey K. J., 2014. Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J. 106, 2636-2643.
  • Kimura Y., Kurabe N., Ikegami K., TsutsumI K., Konishi Y., Kaplan O. I., Kunitomo H., Iino Y., Blacque O. E., Setou M., 2010. Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J. Biol. Chem. 285, 22936-22941.
  • Konishi Y., Setou M., 2009. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559-567.
  • Kubo T., Yanagisawa H. A., Yagi T., Hirono M., Kamiya R., 2010. Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20, 441-445.
  • Lacroix B., Van Dijk J., Gold N.D., Guizetti J., Aldrian-Herrada G., Rogowski K., Gerlich D.W., Janke C., 2010. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189, 945-954.
  • L'Hernault S. W., Rosenbaum J. L., 1985. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24, 473-478.
  • Lafanechere L., Job D., 2000. The third tubulin pool. Neurochem. Res. 25, 11-8.
  • LeDizet M., Piperno G., 1987. Identification of an acetylation site of Chlamydomonas alpha-tubulin. Proc. Natl. Acad. Sci. USA 84, 5720-5724.
  • Lee G. S., He Y., Dougherty E. J., Jimenez-Movilla M., Avella M., Grullon S., Sharlin D. S., Guo C., Blackford J. A. Jr, Awasthi S., Zhang Z., Armstrong S. P., london E. C., Chen W., Dean J., Simons S. S. Jr., 2013. Disruption of Ttll5/stamp gene (tubulin tyrosine ligase-like protein 5/SRC-1 and TIF2-associated modulatory protein gene) in male mice causes sperm malformation and infertility. J. Biol. Chem. 288, 15167-15180.
  • Lesort M., Tucholski J., Miller M. L., Johnson G. V., 2000. Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog. Neurobiol. 61, 439-463.
  • Ley S. C., Verbi W., Pappin D. J., Druker B., Davies A. A., Crumpton M. J., 1994. Tyrosine phosphorylation of alpha tubulin in human T lymphocytes. Eur. J. Immunol. 24, 99-106.
  • Li L., Yang X. J., 2015. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol. Life Sci. 72, 4237-4255.
  • Lim A. C., Tiu S. Y., Li Q., Qi R. Z., 2004. Direct regulation of microtubule dynamics by protein kinase CK2. J. Biol. Chem. 279, 4433-4439.
  • Liu N., Xiong Y., Ren Y., Zhang L., He X., Wang X., Liu M., Li D., Shui W., Zhou J., 2015. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin. J. Proteom. Res. 14, 3292-3304.
  • Ludueña R. F., 1993. Are tubulin isotypes functionally significant. Mol. Biol. Cell 4, 445-457.
  • Lyle K., Kumar P., Wittmann T., 2009a. SnapShot: microtubule regulators I. Cell 136, 380-380.e1.
  • Lyle K., Kumar P., Wittmann T., 2009b. SnapShot: microtubule regulators II. Cell 136, 566- 566.e1.
  • Maccioni R. B., Seeds N. W., 1986. Transglutaminase and neuronal differentiation. Mol. Cell. Biochem. 69, 161-168.
  • Marcos S., Moreau J., Backer S., Job D., Andrieux A., Bloch-Gallego E., 2009. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 4, e5405.
  • Mehta K., Fok J. Y., Mangala L. S., 2006. Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci. 11, 173-185.
  • Misawa T., Takahama, M., Kozaki T., Lee H., Zou J., Saitoh T., Akira S., 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454-460.
  • Mishra S., Saleh A., Espino P. S., Davie J.R., Murphy L. J., 2006. Phosphorylation of histones by tissue transglutaminase. J. Biol. Chem. 281, 5532-5538.
  • Mitsopoulos C., Zihni C., Garg R., Ridley A. J., Morris J. D., 2003. The prostate-derived sterile 20-like kinase (PSK) regulates microtubule organization and stability. J. Biol. Chem. 278, 18085-18091.
  • Nielsen M. G., Turner F. R., Hutchens J. A., Raff E. C., 2001. Axoneme-specific beta-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr. Biol. 11, 529-533.
  • Nieuwenhuis J., Adamopoulos A., Bleijerveld O. B., Mazouzi A., Stickel E., Celie P., Altelaar M., Knipscheer P., Perrakis A., Blomen V. A., Brummelkamp T. R., 2017. Vasohibins encode tubulin detyrosinating activity. Science, doi: 10.1126/science.aao5676.
  • Nogales E., Whittaker M., Milligan R. A., Downing K. H., 1999. High-resolution model of the microtubule. Cell 96, 79-88.
  • O'Hagan R., Piasecki B. P., Silva M., Phirke P., Nguyen K. C., Hall D. H., Swoboda P., Barr M. M., 2011. The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr. Biol. 21, 1685-1694.
  • Ori-Mckenney K. M., McKenney R. J., Huang H. H., Li T., Meltzer S., Jan L. Y., Vale R. D., Wiita A. P., Jan Y. N., 2016. Phosphorylation of β-tubulin by the down syndrome kinase, minibrain/DYRK1a, regulates microtubule dynamics and dendrite morphogenesis. Neuron 90, 551-563.
  • Ozols J., Caron J. M., 1997. Posttranslational modification of tubulin by palmitoylation: II. Identification of sites of palmitoylation. Mol. Biol. Cell 8, 637-45.
  • Park I. Y., Powell R. T., Tripathi D. N., Dere R., Ho T. H., Blasius T. L., Chiang Y. C., Davis I. J., Fahey C. C., Hacker K. E., Verhey K. J., Bedford M. T., Jonasch E., Rathmell W. K., Walker C. L., 2016. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell. 166, 950-962.
  • Pathak N., Obara T., Mangos S., Liu Y., Drummond I. A., 2007. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol. Biol. Cell 18, 4353-4364.
  • Perdiz D., Mackeh R., Poüs C., Baillet A., 2011. The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal. 23, 763-771.
  • Peris L., Thery M., Fauré J., Saoudi Y., Lafanechère L., Chilton J. K., Gordon-Weeks P., Galjart N., Bornens M., Wordeman L., Wehland J., Andrieux A., Job D., 2006. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839-849.
  • Peris L., Wagenbach M., Lafanechère L., Brocard J., Moore A.T., Kozielski F., Job D., Wordeman L., Andrieux A., 2009. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159-1166.
  • Piras R., Piras M. M., 1975. Changes in microtubule phosphorylation during cell cycle of HeLa cells. Proc. Natl. Acad. Sci. USA 72, 1161-1165.
  • Piroli G. G., Manuel A. M., Walla M. D., Jepson M. J., Brock J. W., Rajesh M. P., Tanis R. M., Cotham W. E., Frizzell N., 2014. Identification of protein succination as a novel modification of tubulin. Biochem. J. 462, 231-245.
  • Portran D., Schaedel L., Xu Z., Théry M., Nachury M. V., 2017. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19, 391-398.
  • Preston S. F., Deanin G. G., Hanson R. K., Gordon M. W., 1979. The phylogenetic distribution of tubulin: tyrosine ligase. J. Mol. Evol. 13, 233-244.
  • Prota A. E., Magiera M. M., Kuijpers M., Bargsten K., Frey D., Wieser M., Jaussi R., Hoogenraad C. C., Kammerer R. A., Janke C., Steinmetz M. O., 2013. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 200, 259-270.
  • Redeker V., Levilliers N., Schmitter J. M., Le Caer J. P., Rossier J., Adoutte A. Bre M. H., 1994. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266, 1688-1691.
  • Reed N. A., Cai D., Blasius T. L., Jih G. T., Meyhofer E., Gaertig J., Verhey K. J., 2006. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166-2172.
  • Regnard C., Fesquet D., Janke C., Boucher D., Desbruyeres E., Koulakoff A., Insina C., Travo P., Edde B., 2003. Characterization of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J. Cell Sci. 116, 4181-4190.
  • Rocha C., Papon L., Cacheux W., Marques Sousa P., Lascano V., Tort O., Giordano T., Vacher S., Lemmers B., Mariani P., Meseure D., Medema J. P., Bièche I., Hahne M., Janke C., 2014. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33, 2247-2260.
  • Rogowski K., Juge F., Van Dijk J., Wloga D., Strub J. M., Levilliers N., Thomas D., Bré M. H., Van Dorsselaer A., Gaertig J., Janke C., 2009. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076-1087.
  • Rogowski K., Van Dijk J., Magiera M. M., Bosc C., Deloulme J. C., Bosson A., Peris L., Gold N. D., Lacroix B., Bosch Grau M., Bec N., Larroque C., Desagher S., Holzer M., Andrieux A., Moutin M. J., Janke C., 2010. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564-578.
  • Rosas-Acosta G., Russell W. K., Deyrieux A., Russell D. H., Wilson V. G., 2005. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics. 4, 56-72.
  • Sadoul K., Khochbin S., 2016. The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J. 473, 1859-1868.
  • Schaap I. A., Carrasco C., de Pablo P. J., MacKintosh F.C., Schmidt C. F., 2006. Elastic response, buckling, and instability of microtubules under radial indentation. Biophys. J. 91, 1521-1531.
  • Schneider A., Plessmann U., Weber K., 1997. Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J. Cell Sci. 110, 431-437.
  • Shida T., Cueva J. G., Xu Z., Goodman M. B., Nachury M. V., 2010. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. USA 107, 21517-21522.
  • Sirajuddin M., Rice L.M., Vale RD., 2014. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol.16, 335-344.
  • Song Y., Brady S. T., 2015. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. 25, 125-36.
  • Song Y., Kirkpatrick L. L., Schilling A. B., Helseth D. L., Chabot N., Keillor J. W., Johnson G. V., Brady S. T., 2013. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78, 109-123.
  • Soppina V., Herbstman J. F., Skiniotis G., Verhey K. J., 2012. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 7, e48204.
  • Strahl B. D., Allis C. D., 2000. The language of covalent histone modifications. Nature 403, 41-45.
  • Sudo H., Baas P. W., 2010. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J. Neurosci. 30, 7215-7226.
  • Suryavanshi S., Eddé B., Fox L.A., Guerrero S., Hard R., Hennessey T., Kabi A., Malison D., Pennock D., Sale W.S., Wloga D., Gaertig J., 2010. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr. Biol. 20, 435-440.
  • Szyk A., Deaconescu A. M., Piszczek G., Roll-Mecak A., 2011. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 18, 1250-1258.
  • Szyk A., Piszczek G., Roll-Mecak A., 2013. Tubulin tyrosine ligase and stathmin compete for tubulin binding in vitro. J. Mol. Biol. 425, 2412-2414.
  • Szyk A., Deaconescu A. M., Spector J., Goodman B., Valenstein M. L., Ziolkowska N. E., Kormendi V., Grigorieff N., Roll-Mecak A., 2014. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157, 1405-1415.
  • Tort O., Tanco S., Rocha C., Bièche I., Seixas C., Bosc C., Andrieux A., Moutin M. J., Avilés F. X., Lorenzo J., Janke C., 2014. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 25, 3017-3027.
  • Valenstein M. L., Roll-Mecak A., 2016. graded control of microtubule severing by tubulin glutamylation. Cell 164, 911-921.
  • Verhey K. J., Gaertig J., 2007. The tubulin code. Cell Cycle 6, 2152-2160.
  • Walter W. J., Beránek V., Fischermeier E., Diez S., 2012. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS One 7, e42218.
  • Wandosell F., Serrano L., Avila J., 1987. Phosphorylation of alpha-tubulin carboxyl-terminal tyrosine prevents its incorporation into microtubules. J. Biol. Chem. 262, 8268-8273.
  • Wloga D., Gaertig J., 2010. Post-translational modifications of microtubules. J. Cell Sci. 123, 3447-3455.
  • Wloga D., Rogowski K., Bré M. H., Levilliers N., Van Dijk J., Janke C., Edde B., Jerka-Dziadosz M., Gaertig J., 2008. Glutamylation on alpha-tubulin is not essential but affects the assembly and functions of the subset of microtubules in Tetrahymena. Eukaryotic Cell 7, 1362-1372
  • Wloga D., Webster D., Rogowski K., Bré M.-H., Levilliers N., Jerka-Dziadosz M., Janke C., Dougan S., Gaertig J., 2009. TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Develop. Cell 6, 867-876.
  • Wloga D., Joachimiak E., Louka P., Gaertig J., 2017. Posttranslational modifications of tubulin and cilia. Cold Spring Harb Perspect Biol. 9, doi: 10.1101/cshperspect.a028159.
  • Wong C. C., Xu T., Rai R., Bailey A. O., Yates J. R., 3rd, Wolf Y.I ., Zebroski H., Kashina A., 2007. Global analysis of posttranslational protein arginylation. PLoS Biol 5, e258.
  • Xiao H., El Bissati K., Verdier-Pinard P., Burd B., Zhang H., Kim K., Fiser A., Angeletti R. H., Weiss L. M., 2010. Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation. J. Proteome Res. 9, 359-372.
  • Xu Z., Schaedel L., Portran D., Aguilar A., Gaillard J., Marinkovich M. P., Théry M., Nachury M. V., 2017. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328-332.
  • Yu I., Garnham C. P., Roll-Mecak A., 2015 Writing and reading the tubulin code. J. Biol. Chem. 290, 17163-17172.
  • Zambito A. M., Wolff J., 1997. Palmitoylation of tubulin. Biochem. Biophys. Res. Comm. 239, 650-654.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p95kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.