PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 1 | 57-74
Article title

Miozyny niekonwencjonalne i ich rola w mięśniach poprzecznie prążkowanych i komórkach miogennych

Content
Title variants
EN
Unconventional myosins and their functions in striated muscles and myogenic cells
Languages of publication
PL EN
Abstracts
PL
Miozyny to oddziałujące z aktyną białka motoryczne, zaangażowane w skurcz mięśni, migrację komórek i transport wewnątrzkomórkowy. Występują one we wszystkich organizmach eukariotycznych, w tym w pierwotniakach i roślinach. Miozyny zbudowane są z jednego lub dwóch łańcuchów ciężkich oraz kilku łańcuchów lekkich (1-7 na łańcuch ciężki). Zidentyfikowano kilka tysięcy sekwencji łańcuchów ciężkich miozyn występujących w kilkuset gatunkach. W łańcuchach ciężkich miozyn wyróżniono główkę obejmującą domenę motoryczną (miejsce oddziaływania z aktyną i wiązania ATP) i szyjkę z motywami IQ (miejsce niekowalencyjnego wiązania się z łańcuchami lekkimi) oraz ogonek (zawierający domeny warunkujące specyficzne funkcje poszczególnych izoform miozyny). Na podstawie różnic w sekwencji aminokwasowej domeny motorycznej wyróżniono ponad trzydzieści rodzin w nadrodzinie miozyn, z czego 12, reprezentowanych przez 40 izoform, występuje u człowieka. Miozyny mięśniowe (tworzące rodzinę II) zwane są konwencjonalnymi, a pozostałe - niekonwencjonalnymi. Niniejszy artykuł opisuje nadrodzinę miozyn, a w szczególności budowę i funkcje tych miozyn niekonwencjonalnych, które są obecne w komórkach miogennych i mięśniach poprzecznie-prążkowanych.
EN
Myosins, actin-dependent molecular motors, are engaged in muscle contraction, cell migration and intracellular transport. They are present in all eukaryotic organisms including protists and plants. They are composed of one or two heavy chains, and a number of light chains (1-7 per a heavy chain). Several thousands of myosin heavy chains have been sequenced in hundreds of species. The heavy chain is composed of a motor domain (with actin and ATP binding sites), a neck with IQ motifs (where light chains bind to) and a tail (with domains determining specific functions of a given myosin). A myosin superfamily is divided into over 30 families based on differences in the motor domain primary sequence. Twelve families represented by 40 isoforms are expressed in humans. Well known muscle myosins forming a family II are termed as conventional while all others are termed as unconventional. The article describes the myosin superfamily with emphasis on structure and function of unconventional myosins present in myogenic cells and striated muscles.
Journal
Year
Volume
67
Issue
1
Pages
57-74
Physical description
Dates
published
2018
References
  • Ajima R., Akazawa H., Kodama M., Takeshita F., Otsuka A., Kohno T., Komuro I., Ochiya T., Yokota J., 2008. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 13, 987-999.
  • Ali M. Y., Homma K., Iwane A. H., Adachi K., Itoh H., Kinosita K. Jr, Yanagida T., Ikebe M., 2004. Unconstrained steps of myosin VI appear longest among known molecular motors. Biophys. J. 86, 3804-3810.
  • Altman D., Sweeney H. L., Spudich J. A., 2004. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737-749.
  • Ameen N., Apodaca G., 2007. Defective CFTR apical endocytosis and enterocyte brush border in Myosin VI-deficient mice.Traffic 8, 998-1006.
  • Arden S. D., Puri C., Au J. S., Kendrick-Jones J., Buss F., 2007. Myosin VI is required for targeted membrane transport during cytokinesis.Mol. Biol. Cell 18, 4750-4761.
  • Aschenbrenner L., Lee T. T., Hasson T., 2003. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries.Mol. Biol. Cell 14, 2728-2743.
  • Aschenbrenner L., Naccache S N., Hasson T., 2004. Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol. Biol. Cell 15, 2253-2263.
  • Au J. S.-Y., Puri C., Ihrke G., Kendrick-Jones J., Buss F., 2007. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells.J. Cell Biol. 177, 103-114.
  • Bähler M., 2000. Are class III and class IX myosins motorized signalling molecules? Biochim. Biophys. Acta 1496, 52-59.
  • Bähler M., Elfrink K., Hanley P. J., Thelen S., Xu Y., 2011. Cellular functions of class IX myosins in epithelia and immune cells. Biochem. Soc. Trans. 39, 1166-1168.
  • Bahloul A., Chevreux G., Wells A. L., Martin D., Nolt J., Yang Z., Chen L. Q., Potier N., Van Dorsselaer A., Rosenfeld S., Houdusse A., Sweeney H. L., 2004. The unique insert in myosin VI is a structural calcium calmodulin binding site. Proc. Natl. Acad. Sci USA 101, 4787-4792.
  • Barylko B., Jung G., Albanesi J. P., 2005. Structure, function, and regulation of myosin 1C. Acta Biochim. Polon. 52, 373-380.
  • Batters C., Brack D., Ellrich H., Averbeck B., Veigel C., 2016. Calcium can mobilize and activate myosin-VI. Proc. Natl. Acad. Sci. USA 113, E1162-E1169.
  • Berg J. S., Powell B. C., Cheney R. E., 2001. A millennial myosin census. Mol. Biol. Cell 12, 780-794.
  • Berger J., Berger S., Li M., Currie P. D., 2017. Myo18b is essential for sarcomere assembly in fast skeletal muscle. Human Mol. Genet. 26, 1146-1156.
  • Billington N., Beach J..R., Heissler S. M., Remmert K., Guzik-Lendrum S., Nagy A., Takagi Y., Shao L., Li D., Yang Y., Zhang Y., Barzik M., Betzig E., Hammer J. A., 3rd, Sellers J. R., 2015. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments. Curr. Biol. 25, 942-948.
  • Bonn B. R., Rudolf A., Hornbruch-Freitag C., Daum G., Kuckwa J., Kastl L., Buttgereit D., Renkawitz-Pohl R., 2013. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Exp. Cell Res. 319, 402-416.
  • Buschman M. D.,Field S. J., 2017. MYO18A: An unusual myosin. Adv. Biol. Regul. S2212-4926, 30147-1.
  • Buss F., Kendrick-Jones J., 2008. How are the cellular functions of myosin VI regulated within the cell? Biochem. Biophys. Res. Comm. 369, 165-175.
  • Buss F., Arden S.D., Lindsay M., Luzio J P., Kendrick-Jones J., 2001. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J. 20, 3676-3684.
  • Buss F., Spudich G, Kendrick-Jones J., 2004. Myosin VI: cellular functions and motor properties. Ann. Rev. Cell Dev. Biol. 20, 649-676.
  • Cao J., Li S., Shao M., Cheng X., Xu Z., Shi D., 2014. The PDZ-containing unconventional Myosin XVIIIA regulates embryonic muscle integrity in zebrafish. J. Genet. Gen. 41, 417-428.
  • Cao J. M., Cheng X. N., Li S. Q., Heller S., Xu Z. G., Shi D. L., 2016. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci. Rep. 6, 36768.
  • Chaudhury A., De Miranda-Neto M. H., Pereira R. V. F., Zanoni N. J., 2014. Myosin Va but not NNOSα is significantly reduced in jejunal musculomotor nerve terminals in diabetes mellitus. Front. Med. 1, 17.
  • Chen L., Marquardt M. L., Tester D. J., Sampson K. J., Ackerman M. J., Kass R. S., 2007. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA 104, 20990-20995.
  • Chen Z. Y., Hasson T., Zhang D. S., Schwender B. J., Derfler B. H., Mooseker M. S., Corey D. P., 2001. Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genom. 272, 285-296.
  • Cheney C. M., Kravit N. G., Verbsky J. W., 1993. A New myosin I gene in Drosophila. Biochem. Biophys. Res. Comm. 195,1280-1288.
  • Chibalina M. V., Puri C., Kendrick-Jones J., Buss F., 2009. Potential roles of myosin VI in cell motility. Biochem. Soc. Trans. 37, 966-970.
  • Clark K. A., McElhinny A. S., Beckerle M. C., Gregorio C. C., 2002. Striated muscle cytoarchitecture: an intricate web of form and function. Ann. Rev. Cell Develop. Biol. 18, 637-706.
  • Coluccio L. M., 2008. Myosin I. [W:] Myosins: a superfamily of molecular motors, vol. 7. Coluccio L. M. (red.). Springer Verlag, New York, 95-124.
  • Dance A. L., Miller M., Seragaki S., Aryal P., White B., Aschenbrenner L., Hasson T., 2004. Regulation of myosin-VI targeting to endocytic compartments.Traffic 5, 798-813.
  • De La Cruz E. M., Ostap E. M., Sweeney H. L., 2001. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373-32381.
  • Dunn T. A., Chen S., Faith D. A., Hicks J. L., Platz E. A., Chen Y., Ewing C. M. i współaut., 2006. A novel role of myosin VI in uuman prostate mancer. Am. J. Pathol. 169, 1843-1854.
  • El-Amraoui A., Schonn J. S., Küssel-Andermann P., Blanchard S., Desnos C., Henry J. P., Wolfrum U., Darchen F., Petit C., 2002. MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep. 3, 463-470.
  • Engelhardt V. A., Lyubimova M. N., 1939. Myosin and adesonotriphosphatase. Nature 144, 668-669.
  • Espindola F. S., Suter D. M., Partata L. B., Cao T., Wolenski J. S., Cheney R. E., King S. M., Mooseker M. S., 2000. The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytosk. 47, 269-281.
  • Fan G. H., Lapierre L. A., Goldenring J. R., Sai J., Richmond A., 2004. Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol. Biol. Cell 15, 2456-2469.
  • Fath K. R., Burgess D. R., 1993. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess Myosin-I as a cytoplasmically oriented peripheral membrane protein. J. Cell Biol. 120, 117-127.
  • Finan D., Hartman M. A., Spudich J. A., 2011. Proteomics approach to study the functions of Drosophila myosin VI through identification of multiple cargo-binding proteins.Proc. Natl. Acad. Sci. USA 108, 5566-5571.
  • Foth B. J., Goedecke M. C., Soldati D., 2006. New insights into myosin evolution and classification. Proc. Natl. Acad. Sci. USA 103, 3681-3686.
  • Fukuda M., Kuroda T. S., Mikoshiba K., 2002. Slac2-a/melanophilin,the missing link between Rab27 and myosin Va. Implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 12432-12436.
  • Geisbrecht E. R., Montell D. J., 2002. Myosin VI is required for E-cadherin-mediated border cell migration. Nat. Cell Biol. 4, 616-620.
  • Gorman S. W., Haider N. B., Grieshammer U., Swiderski R. E., Kim E., Welch J. W., Searby C., Leng S., Carmi R., Sheffield V. C., Duhl D. M., 1999. The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22-q23. Genomics 59, 150-160.
  • Gurung R., Ono Y., Baxendale S., Lee S. L., Moore S., Calvert M., Ingham P. W., 2017. A zebrafish model for a human myopathy associated with mutation of the unconventional myosin MYO18B. Genetics 205, 725-735.
  • Hales C. M., Vaerman J. P., Goldenring J. R., 2002. Rab11 family interacting protein 2 associates with myosin Vb and regulates plasma membrane recycling. J. Biol. Chem. 277, 50415-50421.
  • Hammer J. A., Sellers J. R., 2012. Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell. Biol. 13, 13-26.
  • Hammer J. A. 3rd, Wagner W., 2013. Functions of class V myosins in neurons. J. Biol. Chem. 288, 28428-28434.
  • Hammer J. A. 3rd, Korn E. D., Paterson B. M., 1984. Acanthamoeba myosin IA, IB, and II heavy chains are synthesized in vitro from Acanthamoeba messenger RNA. J. Biol. Chem. 259, 11157-11159.
  • Hasson T., Skowron J. F., Gilbert D. J., Avraham K. B., Perry W. L., Bement W. M., Anderson B. L. i współaut., 1996. Mapping of unconventional myosins in mouse and human. Genomics 36, 431-439.
  • He F., Wollscheid H. P., Nowicka U., Biancospino M., Valentini E., Ehlinger A., Acconcia F., Magistrati E., Polo S., Walters K. J., 2016. Myosin VI contains a compact structural motif that binds to ubiquitin chains.Cell Rep. 14, 2683-2694.
  • Hegan P. S., Lanahan A. A., Simons M., Mooseker M. S., 2015. Myosin VI and cardiomyopathy: Left ventricular hypertrophy, fibrosis, and both cardiac and pulmonary vascular endothelial cell defects in the Snell's waltzer mouse. Cytoskeleton 72, 373-387.
  • Henn A., De La Cruz E. M., 2005. Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem. 280, 39665-39676.
  • Hicks J. L., Deng W. M., Rogat A. D., Miller K. G., Bownes M., 1999. Class VI unconventional myosin is required for spermatogenesis in Drosophila. Mol. Biol. Cell 10, 4341-4353.
  • Houdusse A., Gaucher J. F., Krementsova E., Mui S., Trybus K. M., Cohen C., 2006. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc. Natl. Acad. Sci. USA 103, 19326-19331.
  • Inoue A., Sato O., Homma K., Ikebe M., 2002. DOC-2/DAB2 is the binding partner of myosin VI. Biochem. Biophys. Res. Comm. 292, 300-307.
  • Inoue T., Kon T., Ohkura R., Yamakawa H., Ohara O., Yokota J., Sutoh K., 2008. BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking. Gen. Cells 13, 483-495.
  • Karolczak J., Sobczak M., Majewski L, Yeghiazaryan M., Jakubiec-Puka A., Ehler E., Sławińska U., Wilczyński G. M., Rędowicz M. J., 2013. Myosin VI in skeletal muscle: its localization in the sarcoplasmic reticulum, neuromuscular junction and muscle nuclei. Histochem. Cell Biol. 139, 873-885.
  • Karolczak J., Weis S., Ehler E., Kierdaszuk B., Berdyński M., Zekanowski C., Kamińska A. M., Rędowicz M. J., 2014. Myosin VI localization and expression in striated muscle pathology. Anat. Rec. 297, 1706-1713.
  • Karolczak J., Pavlyk I., Majewski L., Sobczak M., Niewiadomski P., Rzhepetskyy Y., Sikorska A., Nowak N., Pomorski P., Prószyński T., Ehler E., Rędowicz M. J., 2015a. Involvement of unconventional myosin VI in myoblast function and myotube formation. Histochem. Cell Biol. 144, 21-38.
  • Karolczak J., Sobczak M., Skowronek K., Rędowicz M.J., 2015b. A kinase anchoring protein 9 is a novel myosin VI binding partner that links myosin VI with the PKA pathway in myogenic cells. Biomed. Res. Int. 2015, 816019.
  • Kisiel M., Majumdar D., Campbell S., Stewart B. A., 2011. Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction. BMC Neurosci. 12, 65.
  • Krendel M., Kim S. V., Willinger T., Wang T., Kashgarian M., Flavell R. A., Mooseker M. S., 2009. Disruption of myosin 1e promotes podocyte injury. J. Am. Soc. Nephrol. 20, 86-94.
  • Kruppa A. J., Kendrick-Jones J., Buss F., 2016. Myosins, actin and autophagy. Traffic 17, 878-90.
  • Kwon T.-J., Oh S.-K., Park H.-J., Sato O., Venselaar H., Choi S. Y., Kim S. i współaut., 2014. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss. Open Biol. 4.
  • Langford G. M., 2002. Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3, 859-865.
  • Lapierre L. A., Kumar R., Hales C. M., Navarre J., Bhartur S. G., Burnette J. O., Provance D. W. Jr, Mercer J. A., Bahler M., Goldenring J. R., 2001. Myosin Vb is associated with plasma membrane recycling systems. Mol. Biol. Cell 12, 1843-1857.
  • Le Bot N., 2008. Isolation of the first non-conventional myosin. The unconventional ones. (1973). Nat. Cytosk. Milestone, doi:10.1038/nrm2562.
  • Libby R. T., Lillo C., Kitamoto J., Williams D. S., Steel K. P., 2004. Myosin Va is required for normal photoreceptor synaptic activity. J. Cell Sci. 117, 4509-4515.
  • Liu K. C., Cheney R. E., 2012. Myosins in cell junctions. Bioarchitecture 2, 158-170.
  • Majewski Ł., Sobczak M., Havrylov S., Jóźwiak J., Rędowicz M. J., 2012. Dock7:a GEF for Rho-family GTPases and a novel myosin VI-binding partner in neuronal PC12 cells. Biochem. Cell Biol. 90, 565-574.
  • Malfatti E., Böhm J., Lacène E., Beuvin M., Romero N. B., Laporte J., 2015. A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J. Neuromusc. Dis. 2, 219-227.
  • Masters T. A., Kendrick-Jones J., Buss F., 2017. Myosins: domain organisation, motor properties, physiological roles and cellular functions. Handbook Exp. Pharmacol. 235, 77-122.
  • McIntosh B. B., Ostap M. E., 2016. Myosin-I molecular motors at a glance. J. Cell Sci. 129, 2689-2695.
  • Menasche G., Ho C. H., Sanal O., Feldmann J., Tezcan I., Ersoy F., Houdusse A., Fischer A., De Saint Basile G., 2003. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1).J. Clin. Invest. 112, 450-456.
  • Menétrey J., Bahloul A., Wells A. L., Yengo C. M., Morris C. A., Sweeney H. L., Houdusse A., 2005. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779-785.
  • Menétrey J., Isabet T., Ropars V., Mukherjea M., Pylypenko O., Liu X., Perez J., Vachette P., Sweeney H. L., Houdusse A. M., 2012. Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI.Mol. Cell 48, 75-86.
  • Mercer J.A., Seperack P.K., Strobel M.C., Copeland N.G., Jenkins N.A., 1991. Novel Myosin Heavy Chain Encoded by Murine Dilute Coat Colour Locus. Nature 349, 709-713.
  • Mermall V., Post P. L., Mooseker M. S., 1998. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527-533.
  • Mohiddin S. A., Ahmed Z. M., Griffith A. J., Tripodi D., Friedman T. B., Fananapazir L., Morell R. J., 2004. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J. Med. Genet. 41, 309-314.
  • Moraczewska J., Śliwińska M., Rędowicz M. J., 2012. Udział jonów wapnia w regulacji oddziaływań aktyny z miozyną. Post. Biochem. 58, 437-451.
  • Mori K., Matsuda K., Furusawa T., Kawata M., Inoue T., Obinata M., 2005. Subcellular localization and dynamics of MysPDZ (Myo18A) in live mammalian cells. Biochem. Biophys. Res. Comm. 326, 491-498.
  • Morris S. M., Arden S. D., Roberts R. C., Kendrick-Jones J., Cooper J. A., Luzio J. P., Buss F., 2002. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3, 331-341.
  • Morriswood B., Ryzhakov G., Puri C., Arden S. D., Roberts R., Dendrou C., Kendrick-Jones J., Buss F., 2007. T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion.J. Cell Sci. 120, 2574-2585.
  • Mukherjea M., Linas P., Kim H. J., Travaglia M., Safer D., Menétrey J., Franzini-Armstrong C., Selvin P. R., Houdusse A., Sweeney H. L., 2009. Myosin VI dimerization triggers an unfolding of a 3-helix bundle in order to extend its reach. Mol. Cell 35, 305-315.
  • Naccache S. N., Hasson T., 2006. Myosin VI altered at threonine 406 stabilizes actin filaments in vivo. Cell Motil. Cytoskel. 63, 633-645.
  • Nagashima K., Torii S., Yi Z., Igarashi M., Okamoto K., Takeuchi T., Izumi T., 2002. Melanophilin directly links Rab27a and myosinVa through its distinct coiled-coil regions. FEBS Lett. 517, 233-238.
  • Neel B. A., Lin Y., Pessin J. E, 2013. Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol. Metabol. 24, 635-643.
  • Nishikawa S., Homma K., Komori Y., Iwaki M., Wazawa T., Hikikoshi Iwane A., Saito J., Ikebe R., Katayama E., Yanagida T., Ikebe M., 2002. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Comm. 290, 311-317.
  • Okten Z., Churchman L. S., Rock R. S., Spudich J. A., 2004. Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol. 11, 884-887.
  • Omelchenko T., 2012. Regulation of collective cell migration by RhoGAP myosin IXA. Small GTPases 3, 213-218.
  • Osterweil E., Wells D. G., Mooseker M. S., 2005. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329-338
  • Pastural E., Barrat F. J., Dufourcq-Lagelouse R., Certain S., Sanal O., Jabado N., Seger R., Griscelli C., Fischer A., de Saint-Basile G., 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet. 16, 289-292.
  • Penengo L., Mapelli M., Murachelli A. G., Confalonieri S., Magri L., Musacchio A., Di Fiore P. P., Polo S., Schneider T. R., 2006. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.Cell 124, 1183-1195.
  • Phichith D., Travaglia M., Yang Z., Liu X., Zong A. B., Safer D., Sweeney H. L., 2009. Cargo binding induces dimerization of myosin VI. Proc. Natl. Acad. Sci. USA 106, 17320-7324.
  • Pollard T. D., Korn E. D., 1973. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682-4690.
  • Post P. L., Bokoch G. M., Mooseker M. S., 1998. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J. Cell Sci. 111, 941-950.
  • Prekeris R., Terrian D., 1997. Brain myosin V is a synaptic vesicle-associated motor proteinevidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex.J. Cell Biol. 137, 1589-1601.
  • Provance D. W., James T. L., Mercer J. A., 2002. Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 3, 124-132.
  • Reck-Peterson S. L., Provance D. W., Mooseker M. S., Mercer J. A., 2000. Class V myosins. Biochim. Biophys. Acta 1496, 36-51.
  • Rędowicz M. J., 2001. Miozyna a patologia. Kosmos 50, 315-324.
  • Rędowicz M. J., 2002. Myosins and pathology: genetics and biology. Acta Biochim. Polon. 49, 789-804.
  • Rędowicz M. J., 2007. Unconventional myosins in muscle. Eur. J. Cell Biol. 86, 549-558.
  • Rock R. S., Ramamurthy B., Dunn A. R., Beccafico S., Rami B. R., Morris C., Spink B. J., Franzini-Armstrong C., Spudich J. A., Sweeney H. L., 2005. A flexible domain is essential for the large step size and processivity of myosin VI. Mol. Cell 17, 603-609.
  • Rock R. S., Rice S. E., Wells A. L., Purcell T. J., Spudich J. A., Sweeney H. L., 2001. Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci .USA 98, 13655-13659.
  • Röder I. V., Petersen Y., Choi K. R., Witzemann V., Hammer J. A. 3rd,Rudolf R., 2008. Role of myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS One 3, e3871.
  • Röder I. V., Strack S., Reischl M., Dahley O., Khan M. M., Kassel O., Zaccolo M., Rudolf R., 2012. Participation of myosin Va and PKA type I in the regeneration of neuromuscular Junctions. PloS One 7, e40860.
  • Rodriguez O. C., Cheney R. E., 2002. Human myosin-Vc is a novel class v myosin expressed in epithelial cells. J. Cell Sci. 115, 991-1004.
  • Roland J. T., Lapierre L. A., Goldenring J. R., 2009. Alternative splicing in class v myosins determines association with rab10. J. Biol. Chem. 284, 1213-1223.
  • Roux I., Hoise S., Johnson S. L., Bahloul A., Cayet N., Nouaille S., Kros C. J., Petit C., Safieddine S., 2009. Myosin VI is required for proper maturation and function of inner hair cell ribbon synapses. Hum. Mol. Gen. 18, 4615-4628.
  • Rudolf R., Kogel T., Kuznetsov S. A., Salm T., Schlicker O., Hellwig A., Hammer J. A. 3rd, Gerdes H. H., 2003. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.J. Cell Sci. 116, 1339-1348.
  • Sahlender D.A., Roberts R.C., Arden S.D., Spudich G., Taylor M.J., Luzio J.P., Kendrick-Jones J., Buss F., 2005. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis.J. Cell Biol. 169, 285-295.
  • Sakurai K., Hirata M., Yamaguchi H., Nakamura Y., Fukami K., 2011. Phospholipase Cδ3 is a novel binding partner of myosin VI and functions as anchoring of myosin VI on plasma membrane.Adv. Enzyme Regul. 51, 171-181.
  • Salamon M., Millino C., Raffaello A., Mongillo M., Sandri C., Bean C., Negrisolo E. i współaut., 2003. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J. Mol. Biol. 326, 137-149.
  • Sellers J. R., 1999. Myosin. Protein Profile. Oxford University Press, Oxford.
  • Sobczak M., Chumak V., Pomorski P., Wojtera E., Majewski Ł., Nowak J., Yamauchi J., Rędowicz M. J., 2016. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells. Biochim. Biophys. Acta 1863, 1589-1600.
  • Sokal I., Haeseleer F., 2011. Insight into the role of Ca2+-binding protein 5 in vesicle exocytosis. Invest. Ophthalmol. Vis. Sci. 52, 9131-9141.
  • Spudich G., Chibalina M. V., Au J. S., Arden S. D., Buss F., Kendrick-Jones J., 2007. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat. Cell Biol. 9, 176-183.
  • Strom M., Hume A. N., Tarafder A. K., Barkagianni E., Seabra M. C., 2002. A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem. 277, 25423-25430.
  • Swailes N. T., Colegrave M., Knight P. J., Peckham M., 2006. Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse. J. Cell Sci. 119, 3561-3570.
  • Sweeney H. L., Houdusse A., 2010. Myosin VI rewrites the rules for myosin motors. Cell 141, 573-582.
  • Takeda K., Yu Z. X., Qian S., Chin T. K., Adelstein R. S., Ferrans V. J., 2000. Nonmuscle Myosin II localizes to the Z-Lines and Intercalated discs of cardiac muscle and to the z-lines of skeletal muscle. Cell Motil. Cytoskel. 46, 59-68.
  • Tan I., Yong J., Dong J. M., Lim L., Leung T.,2008. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135, 123-136.
  • Titus M. A., 1999. A class VII Unconventional myosin is required for phagocytosis. Curr. Biol. 9, 1297-1303.
  • Trybus K. M., 2008. Myosin V from head to tail. Cell Mol. Life Sci. 65, 1378-1389.
  • Tullio A. N., Accili D., Ferrans V. J., Yu Z. X., Takeda K., Grinberg A., Westphal H., Preston Y. A., Adelstein R. S., 1997. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl. Acad. Sci. USA 94, 12407-12412.
  • Tumbarello D. A., Waxse B. J., Arden S. D., Bright N. A., Kendrick-Jones J., Buss F., 2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14, 1024-1035.
  • Tumbarello D. A., Kendrick-Jones J., Buss F., 2013. Myosin VI and its cargo adaptors - linking endocytosis and autophagy. J. Cell Sci. 126, 2561-2570.
  • Tuxworth R. I., Weber I., Wessels D., Addicks G. C., Soll D. R., Gerisch G., Titus M. A., 2001. A Role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318-329.
  • Udovichenko I. P., Gibbs D., Williams D. S., 2002. Actin-based motor properties of native myosin VIIa. J. Cell Sci. 115, 445-450.
  • Vale R. D., 2003. Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol. 163, 445-450.
  • Volpicelli L. A., Lah J. J., Fang G., Goldenring J. R., Levey A. I., 2002. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J. Neurosci. 22, 9776-9784.
  • Wakabayashi Y., Dutt P., Lippincott-Schwartz J., Arias I. M., 2005. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl. Acad. Sci. USA 102, 15087-5092.
  • Waxse B. J., Sengupta P., Hesketh G. G., Lippincott-Schwartz J., Buss F., 2017. Myosin VI facilitates connexin 43 gap junction accretion. J. Cell Sci. 130, 827-840.
  • Wei Z., Liu X., Yu C., Zhang M., 2013. Structural basis of cargo recognitions for class V myosins. Proc. Natl. Acad. Sci. USA 110, 11314-11319.
  • Wells C., Coles D., Entwistle A., Peckham M., 1997. Myogenic cells express multiple myosin isoforms. J. Muscle Res. Cell Motil. 18, 501-515.
  • Wirth J. A., Jensen K. A., Post P. L., Bement W. M., Mooseker M. S., 1996. Human myosin-IXb, an unconventional myosin with a chimerin-like Rho/Rac GTPase-activating protein domain in its tail. J. Cell Sci. 109, 653-661.
  • Wu X., Wang F., Rao K., Sellers J. R., Hammer J. A. 3rd., 2002a. Rab27a is an essential component of melanosome receptor for myosin Va. Mol. Biol. Cell 13, 1735-1749.
  • Wu X. S., Rao K., Zhang H., Wang F., Sellers J. R., Matesic L. E., Copeland N. G., Jenkins N. A., Hammer J. A. 3rd., 2002b. Identification of an organelle receptor for myosin-Va. Nat. Cell Biol. 4, 271-278.
  • Xie P., 2010. A Model for Processive Movement of Single-Headed Myosin-IX. Biophys. Chem. 151, 71-80.
  • Yildiz A., Park H., Safer D., Yang Z., Chen L. Q., Selvin P. R., Sweeney H. L., 2004. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37223-37226.
  • Yoshida H., Cheng W., Hung J., Montell D., Geisbrecht E., Rosen D, Liu J., Naora H., 2004. Lessons from border cell migration in the drosophila ovary: a role for myosin VI in dissemination of human ovarian cancer. Proc. Natl. Acad. Sci. USA 101, 8144-8149.
  • Zakrzewski P., Lenartowski R., Rędowicz M. J., Miller K. G., Lenartowska M., 2017. Expression and localization of myosin VI in developing mouse spermatids. Histochem. Cell Biol. 48, 445-462.
  • Zhao L. P., Koslovsky J. S., Reinhard J., Bähler M., Witt A. E., Provance D. W., Mercer J. A., 1996. Cloning and characterization of Myr 6, an unconventional myosin of the dilute/myosin-V family. Proc. Natl. Acad. Sci. USA 93, 10826-10831.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p57kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.