Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 43-55

Article title

Modyfikacje potranslacyjne aktyny

Authors

Content

Title variants

EN
Posttranslational modifications of actin

Languages of publication

PL EN

Abstracts

PL
Aktyna, komponent cytoszkieletu komórek eukariotycznych, to jedno z białek najistotniejszych dla funkcjonowania organizmów i najlepiej zachowanych w toku ewolucji. Ta globularna cząsteczka o masie cząsteczkowej około 42,3 kDa występuje zarówno w formie monomerycznej, jak i spolimeryzowanej (filamenty), a zdolność do dynamicznej reorganizacji aktyny jest niezbędna dla życia komórki. Przejście pomiędzy obiema formami jest możliwe dzięki precyzyjnej w czasie i przestrzeni, dynamicznej regulacji organizacji aktyny przez szereg białek wiążących się zarówno z monomerami, jak i filamentami aktyny. Istotnym czynnikiem wpływającym na stopień spolimeryzowania aktyny są także liczne modyfikacje potranslacyjne tego białka. Niniejszy artykuł przeglądowy jest poświęcony omówieniu tego obszernego i wciąż mało poznanego zagadnienia, a w szczególności opisowi jakim modyfikacjom ulega aktyna i w jaki sposób modyfikacje te wpływają na strukturę i funkcje tego wyjątkowego białka.
EN
Actin, a constituent of the cytoskeleton of eukaryotic cells, is one of the most important as well as best evolutionary conserved proteins. This globular protein with molecular mass of ~42.3 kDa exists in the cell both in the monomeric and filamentous form, and ability to undergo dynamic reorganization of these two forms is absolutely crucial for cell survival. The monomer-filament transition, precisely controlled in time and space, is possible due to interaction of actin with a panoply of proteins binding to either monomeric or filamentous actin. Yet another factor is affecting actin organization, namely numerous posttranslational modifications. This review article is devoted to presentation of this broad and still unrecognized topic with emphasis on description of the type of actin modifications and how they affect actin structure and function.

Keywords

Journal

Year

Volume

67

Issue

1

Pages

43-55

Physical description

Dates

published
2018

Contributors

  • Pracownia Molekularnych Podstaw Ruchów Komórkowych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw,, Poland

References

  • Akimoto Y., Miura Y., Toda T., Wolfert M. A., Wells L., Boons G. J., Hart G. W., Endo T., Kawakami H., 2011. Morphological changes in diabetic kidney are associated with increased OGlcNAcylation of cytoskeletal proteins including alpha-actinin 4. Clin. Proteomics 8, 15.
  • Aktories K., Lang A. E., Schwan C., Mannherz H. G., 2011. Actin as target for modification by bacterial protein toxins. FEBS J. 278, 4526-4543.
  • Alonso A., Greenlee M., Matts J., Kline J., Davis K. J., Miller R. K., 2015. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton 72, 305-339.
  • Bano M. C., Jackson C. S., Magee A. I., 1998. Pseudo-enzymatic Sacylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem. J. 330, 723-731.
  • Belin B. J., Mullins R. D. 2013. What we talk about when we talk about nuclear actin. Nucleus 4, 291-297.
  • Bender N., Fasold H., Kenmoku A., Middelhoff G., Volk K. E., 1976. The selective blocking of the polymerization reaction of striated muscle actin leading to a derivative suitable for crystallization. Modification of Tyr-53 by 5-diazonium-(1H)tetrazole. Eur. J. Biochem. 64, 215-218.
  • Blanchoin L., Boujemaa-Paterski R., Sykes C., Plastino J., 2014. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235-263.
  • Burgess S., Walker M., Knight P. J., Sparrow J., Schmitz S., Offer G., Bullard B., Leonard K., Holt J., Trinick J., 2004. Structural studies of arthrin: monoubiquitinated actin. J. Mol. Biol. 341, 1161-1173.
  • Chiou Y. Y., Fu S. L., Lin W. J., Lin C. H., 2012. Proteomics analysis of in vitro protein methylation during Src-induced transformation. Electrophoresis 33, 451-461.
  • Cimmino A., Capasso R., Muller F., Sambri I., Masella L., Raimo M., De Bonis M. L., D'Angelo S., Zappia V., Galletti P., Ingrosso D., 2008. Protein isoaspartate methyltransferase prevents apoptosis induced by oxidative stress in endothelial cells: role of Bcl-Xl deamidation and methylation. PLoS One 3, e3258.
  • Cohen S., Brault J. J., Gygi S. P., Glass D. J., Valenzuela D. M., Gartner C., Latres E., Goldberg A. L., 2009. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185, 1083-1095.
  • Cook R. K., Sheff D. R., Rubenstein P. A., 1991 Unusual metabolism of the yeast actin amino terminus. J. Biol. Chem. 266, 16825-16833.
  • Dantan-Gonzalez E., Rosenstein Y., Quinto C., Sanchez F., 2001. Actin monoubiquitylation is induced in plants in response to pathogens and symbionts. Mol. Plant Microbe Interact. 14, 1267-1273.
  • Del Duca S., Serafini-Fracassini D., Bonner P., Cresti M., Cai G. 2009. Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem. J. 418, 651-664.
  • Feuer G., Molnar F., Pettko E., Straub F. B., 1948. Studies on the composition and polymerization of actin. Hung. Acta Physiol. 1, 150-163.
  • Finley D., Chau V., 1991. Ubiquitination. Annu. Rev. Cell Biol. 7, 25-69.
  • Fofana B., Yao X.H., Rampitsch C., Cloutier S., Wilkins J. A., Nyomba B. L., 2010. Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver. Proteomics 10, 417-434.
  • Hart G. W., Housley M. P., Slawson C., 2007. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017-1022.
  • Herman I. M., 1993. Actin isoforms. Curr. Opin. Cell Biol. 5, 48-55.
  • Hofmann W. A., Arduini A., Nicol S. M., Camacho C. J., Lessard J. L., Fuller-Pace F. V., de Lanerolle P., 2009. SUMOylation of nuclear actin. J. Cell Biol. 186, 193-200.
  • Hung R. J., Terman J. R. 2011. Extracellular inhibitors, repellents, and Semaphorin/Plexin/ MICAL-mediated actin filament disassembly. Cytoskeleton 68, 415-433.
  • Hung R. J., Yazdani U., Yoon J., Wu H., Yang T., Gupta N., Huang Z., van Berkel W. J., Terman J. R., 2010. Mical links semaphorins to F-actin disassembly. Nature 463, 823-827.
  • Hung R. J., Pak C. W., Terman J. R., 2011. Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334, 1710-1713.
  • Just I., Sehr P., Jung M., van Damme J., Puype M., Vandekerckhove .J, Moss J., Aktories K., 1995. ADP-ribosyltransferase type A from turkey erythrocytes modifies actin at Arg-95 and Arg-372. Biochemistry 34, 326-333.
  • Kang L. T., Vanderhoek J. Y., 1998. Mono(S)hydroxy fatty acids: novel ligands for cytosolic actin. J. Lipid Res. 39, 1476-1482.
  • Karakozova M., Kozak M., Wong C. C. L., Bailey A. O., Yates J. R., Mogilner A., Zebroski H., Kashina A., 2006. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313, 192-196.
  • Kashina A. S., 2006. Differential arginylation of actin isoforms: the mystery of the actin N-terminus. Trends Cell Biol. 16, 610-615.
  • Kovacs J. J., Hubbert C., Yao T. P., 2004. The HDAC complex and cytoskeleton. Novartis Found Symp. 259;170-177; dyskusja 178-181, 223-175.
  • Kudryashov D. S., Durer Z. A., Ytterberg A. J., Sawaya M. R., Pashkov I., Prochazkova K., Yeates T. O., Loo R. R., Loo J. A., Satchell K. J., Reisler E., 2008. Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc. Natl. Acad. Sci. USA 105, 18537-18542
  • Kudryashova E., Kudryashov D., Kramerova I., Spencer M. J., 2005. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J. Mol. Biol. 354, 413-424.
  • Kuleva N. V., Kovalenko Z. S., 1997. Change in the functional properties of actin by its glycation in vitro. Biochemistry 62, 1119-1123.
  • Kurogi K., Sakakibara Y., Kamemoto Y., Takahashi S., Yasuda S., Liu M. C., Suiko M., 2010. Mouse cytosolic sulfotransferase SULT2B1b interacts with cytoskeletal proteins via a proline/serine-rich Cterminus. FEBS J. 277, 3804-3811.
  • Kurosaka S., Leu N.A., Zhang F., Bunte R., Saha S., Wang J., Guo C., He W., Kashina A., 2010. Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 6, e1000878.
  • Kwon Y. T., Kashina A. S., Davydov I. V., Hu R. G., An J. Y., Seo J. W., Du F., Varshavsky A., 2002. An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96-99.
  • Miller Y. I., Chang M. K., Funk C. D., Feramisco J. R., Witztum J. L., 2001. 12/15-lipoxygenase translocation enhances site-specific actin polymerization in macrophages phagocytosing apoptotic cells. J. Biol. Chem. 276, 19431-19439.
  • Montecucco C., Rasotto M. B., 2015. On botulinum neurotoxin variability. MBio 6, e02131-14
  • Mottet D., Castronovo V., 2008. Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis 25, 183-189.
  • Mustafa A. K., Gadalla M. M., Sen N., Kim S., Mu W., Gazi S. K., Barrow R. K., Yang G., Wang R., Snyder S. H., 2009. H2S signals through protein S-sulfhydration. Sci. Signal. 2, ra72.
  • Oda T., Iwasa M., Aihara T., Maeda Y., Narita A., 2009. The nature of the globular- to fibrous-actin transition. Nature 457, 441-445.
  • Ohta Y., Akiyama T., Nishida E., Sakai H., 1987: Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett. 222, 305-310.
  • Okamoto H., Fujita H., Matsuyama S., Tsuyama S., 1997. Purification, characterization, and localization of an ADP-ribosylactin hydrolase that uses ADP-ribosylated actin from rat brains as a substrate. J. Biol. Chem. 272, 28116-28125.
  • Okazaki I. J., Moss J., 1996. Mono-ADP-ribosylation: a reversible posttranslational modification of proteins. Adv. Pharmacol. 35, 247-280.
  • Otterbein L. R., Graceffa P., Dominguez R., 2001. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708-711.
  • Perrin B. J., Ervasti J. M., 2010. The actin gene family: function follows isoform. Cytoskeleton 67, 630-634.
  • Polge C., Heng A. E., Jarzaguet M., Ventadour S., Claustre A., Combaret L., Bechet D., Matondo M., Uttenweiler-Joseph S., Monsarrat B., Attaix D., Taillandier D., 2011. Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J. 25, 3790-3802.
  • Pollard T. D., Cooper J. A., 2009. Actin, a central player in cell shape and movement. Science 326, 1208-1212.
  • Raghavan M., Lindberg U., Schutt C., 1992. The use of alternative substrates in the characterization of actin-methylating and carnosine-methylating enzymes. Eur. J. Biochem. 210, 311-318.
  • Rai R., Wong C. C., Xu T., Leu N. A., Dong D. W., Guo C., McLaughlin K. J., Yates J. R. 3rd, Kashina A. 2008. Arginyltransferase regulates alpha-cardiac actin function, myofibril formation and contractility during heart development. Development 135, 3881-3889.
  • Resmi H., Akhunlar H., Temiz Artmann A., Guner G., 2005. In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell Biochem. Funct. 23, 163-168.
  • Saha S., Mundia M. M., Zhang F., Demers R. W., Korobova F., Svitkina T., Perieteanu A. A., Dawson J. F., Kashina A., 2010. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol. Biol. Cell 21, 1350-1361.
  • Saha S., Wong C. C., Xu T., Namgoong S., Zebroski H., Yates J. R. 3rd, Kashina A., 2011. Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem. Biol. 18, 1369-1378.
  • Schmitz S., Clayton J., Nongthomba U., Prinz H., Veigel C., Geeves M., Sparrow J., 2000. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function. J. Mol. Biol. 295, 1201-1210.
  • Shaevitz J. W., Gitai Z., 2010. The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2, a000364.
  • Shartava A., Monteiro C. A., Bencsath F. A., Schneider K., Chait B. T., Gussio R., Casoria-Scott L. A., Shah A. K., Heuerman C. A., Goodman S. R., 1995. A posttranslational modification of beta-actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells. J. Cell Biol. 128, 805-818.
  • Stadler J., Gerisch G., Bauer G., Deppert W., 1985. In vivo acylation of Dictyostelium actin with palmitic acid. EMBO J. 4, 1153-1156.
  • Starheim K. K., Gevaert K., Arnesen T., 2012. Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161.
  • Su Y., Kondrikov D., Block E. R., 2007. β-actin: a regulator of NOS-3. Sci. STKE 2007, pe52.
  • Terashima M., Yamamori C., Shimoyama M., 1995. ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase. Eur. J. Biochem. 231, 242-249.
  • Terman J. R., Kashina A., 2013. Post-translational modification and regulation of actin. Curr. Opin. Cell Biol. 25, 30-38.
  • Utsumi T., Sakurai N., Nakano K., Ishisaka R., 2003. C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally Nmyristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett. 539, 37-44.
  • Vandekerckhove J., Weber K., 1978. Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc. Natl. Acad. Sci. USA 75, 1106-1110.
  • Vijayasarathy C., Rao B. S., 1987. Partial purification and characterisation of S-adenosylmethionine: protein-histidine N-methyltransferase from rabbit skeletal muscle. Biochim. Biophys. Acta 923, 156-165.
  • Waelkens E., Gettemans J., De Corte V., De Ville Y., Goris J., Vandekerckhove J., Merlevede W., 1995. Microfilament dynamics:regulation of actin polymerization by actin-fragmin kinase and phosphatases. Adv. Enzyme Regul. 35, 199-227.
  • Wang J., Han X., Wong C. C., Cheng H., Aslanian A., Xu T., Leavis P., Roder H., Hedstrom L., Yates J. R. 3rd, Kashina A., 2014. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem. Biol. 21, 331-337.
  • Wilson C., Terman J. R., González-Billault C., Ahmed G., 2016. Actin filaments-A target for redox regulation. Cytoskeleton 73, 577-595.
  • Wong C. C., Xu T., Rai R., Bailey A. O., Yates J. R. 3rd, Wolf Y. I., Zebroski H., Kashina A., 2007. Global analysis of posttranslational protein arginylation. PLoS Biol 5, e258.
  • Zhang D., Zhang D.-E., 2011. Interferon-Stimulated Gene 15 and the Protein ISGylation System. J. Interferon Cytokine Res. 31, 119-130.
  • Zhang F., Saha S., Shabalina S. A., Kashina A., 2010. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329, 1534-1537.
  • Zhu J. X., Doyle H. A., Mamula M. J., Aswad D. W., 2006. Protein repair in the brain, proteomic analysis of endogenous substrates for protein L-isoaspartyl methyltransferase in mouse brain. J. Biol. Chem. 281, 33802-33813.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p43kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.