PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 2 | 347-359
Article title

Biomarkery wykorzystywane w ocenie oksydacyjnych uszkodzeń białek

Content
Title variants
EN
Biomarkers of proteins oxidative damage
Languages of publication
PL EN
Abstracts
PL
Przewaga procesów prooksydacyjnych w organizmie skutkuje wystąpieniem stresu oksydacyjnego objawiającego się m.in. utlenianiem białek. Bezpośrednia analiza ilości reaktywnych form tlenu i azotu jest zadaniem bardzo trudnym, dlatego w ocenie nasilenia stresu oksydacyjnego częściej wykorzystuje się markery uszkodzeń, powstające w wyniku reakcji wolnych rodników z białkami. Są one o wiele trwalsze, a przez to łatwiejsze do analizy. Wśród najważniejszych biomarkerów oksydacyjnych uszkodzeń białek wyróżnia się pochodne karbonylowe, 3-nitrotyrozynę, S-nitrotriazole, kynureninę, 3-chlorotyrozynę, bromotyrozynę, sulfotlenek metioniny, dityrozynę, oksohistydynę oraz tzw. zaawansowane produkty oksydacji białek (AOPP).
W ocenie oksydacyjnych uszkodzeń białek u zwierząt laboratoryjnych najlepiej sprawdzają się pochodne karbonylowe, 3-nitrotyrozyna i AOPP. Ich zawartość w ustroju wyraźnie wzrasta w odpowiedzi na stres oksydacyjny wywołany takimi czynnikami, jak: niewłaściwa dieta, niedobór mikroelementów, zatrucie substancjami toksycznymi, infekcje czy starzenie.
EN
The prevalence of prooxidative processes in the body is associated with development of oxidative stress, one of the symptoms of which is oxidation of proteins. Direct analysis of the amount of reactive forms of oxygen and nitrogen is a very difficult task. Therefore, in assessing the severity of oxidative stress, markers generated by free radical reactions with proteins are often used. They are much more durable and thus easier to analyze. The most important biomarkers of oxidative damage of proteins are protein carbonyl compounds, 3-nitrothyrosine, S-nitrotriazoles, kynurenine, 3-chlorothyrozine, bromothyroxine, methionine sulfoxide, dithyrosine, oxohistidine and and so called advanced oxidation protein products (AOPP).
Protein carbonyls, 3-nitrotyrosine and AOPP are the best indicators for evaluating of oxidative damage of proteins in laboratory animals. Their content in the body is clearly increasing in response to oxidative stress caused by such factors as improper diet, micronutrient deficiencies, toxic poisoning, infections or aging.
Journal
Year
Volume
67
Issue
2
Pages
347-359
Physical description
Dates
published
2018
Contributors
  • Katedra Biochemii i Toksykologii, Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie, Akademicka 13, 20-950 Lublin, Polska
  • Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 13 Akademicka Str., 20-950 Lublin, Poland
  • Katedra Biochemii i Toksykologii, Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie, Akademicka 13, 20-950 Lublin, Polska
  • Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 13 Akademicka Str., 20-950 Lublin, Poland
References
  • Amara I. B., Soudani N., Hakim A., Troudi A., Zeghal K. M., Boudawara T., Zeghal N., 2011. Selenium and vitamin E, natural antioxidants, protect rat cerebral cortex against dimethoate-induced neurotoxicity. Pesticide Biochem. Physiol. 101, 165-174.
  • Azevedo M. I., Ferreiro L., Da Silva A. S., Tonin A. A., Thorstenberg M. L., Catilhos L. G., França R. T., Leal D. B. R., Duarte M. M. M. F., Lopes S. T. A., Sangoi M. B., Moresco R. N., Fighera R., Santurio J. M., 2015. Cholinesteraze of rats experimentally infected by Cryptococcus neoformans: Relationship between inflammatory response and pathological findings. Pathol. Res. Practice 211, 851-857.
  • Bailey S. M., Patel V. B., Young T. A., Asayama K., Cunningham C. C., 2001. Chronic etanol consumption alters the glutathione/ glutathione peroxidase-1 system and protein oxidation status in rat liver. Clin. Exp. Res. 25, 726-732.
  • Çakatay U., Telci A., Kayali R., Tekeli F., Akçay T., Sivas A., 2003. Relation of aging with oxidative protein damage parameters in the rat skeletal muscle. Clin. Biochem. 36, 51-55.
  • Chandramathi S., Suresh K., Anita Z. B., 2009. Comparative assessment of urinary oxidative indices in breast and colorectal cancer patients. J. Cancer Res. Clin. Oncol. 135, 319-323.
  • Chapman A. L. P., Senthilmohan R., Winnterbourn C. C., Kettle A. J., 2000. Comparison of mono- and dichlorinated tyrosines with carbonyls for detection of hypochlorous. Acid Modif. Prot. 377, 95.
  • Chen K. M., El-Bayoumy K., Hosey J., Cunningham J., Aliaga C., Melikian A. A., 2005. Benzene increases protein- bound 3-nitrotyrosine in bone marrow of B6C3F1 mice. Chem.- Biol. Interact. 156, 81-91.
  • Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R., 2003. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23-28.
  • Dalle-Donne I., Scaloni A., Giustarini D., Cavarra E., Tell G., Lungarella G., Colombo R., Rossi R., Milzani A., 2005. Protein as biomarkers of oxidative/ nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom. Rev. 24, 55-99.
  • Doǧru-Abbasoǧlu S., Parildar-Karpuzoǧlu H., Balkan J., Aykaç-Toker G., Uysal M., 2007. Nitrotyrosine formation and heme oxygenase- 1 expression in endotoxemic cirrhotic rats. Arch. Med. Res. 38, 28-33.
  • Ehrenshaft M., Deterding L. J., Mason R. P., 2015. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Rad. Med. 89, 220-228.
  • Gaut J. P., Byun J., Tran H. D., Heinecke J. W., 2002. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Biochem. 300, 252-259.
  • Giulivi C., Traaseth N. J., Davies J. A., 2003. Tyrosine oxidation products: analysis and biological relevance. Amino Acids 25, 227-231.
  • Grimsrud P. A., Xie H., Griffin T. J., Bernlohr D. A., 2008. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 283, 21837-21841.
  • Güney Y., Türkçü Ö.Ü., Mertoǧlu Ö., Bilgihan A., Hiçsönmez A., Andrieu M. N., Kurtman C., 2006. Serum AOPP, selenium and vitamin E levels after irradiation. Turk. J. Cancer 36, 19-21.
  • Huang C, Liu Y., Tai H., 2015. Synthesis of peptides containing 2-oxohistidine residues and their characterization by liquid chromatography-tandem mass spectrometry. J. Peptide Sci. 21, 114-119.
  • Ishii Y., Iijima M., Umemura T., Nishikawa A., Iwasaki Y., Ito R., Saito K., Hirose M., Nakazawa H., 2006. Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass-spectrometry and immunohistochemical analysis in livers of mice administered acetaminophen. J. Pharmaceut. Biomed. Anal. 41, 1325-1331.
  • Karolkiewicz J., 2011. Wpływ stresu oksydacyjnego na strukturę i funkcje komórek oraz konsekwencje wynikające z uszkodzeń wolnorodnikowych - związek z procesami starzenia. Gerontologia Polska 19, 59-65.
  • Kołodziejczyk J., 2010. 3-nitrotyrozyna- marker stresu oksydacyjnego in vitro i in vivo. J. Lab. Diagnost. 46, 141-145.
  • Matthews R. T., Flint Beal M., 1996. Increased 3-nitrotyrosine in brains of Apo E- deficient mice. Brain Res. 718, 181-184.
  • Oteiza P. I., Olin K. L., Fraga C. G., Keen C. L., 1995. Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J. Nutrit. 95, 823-828.
  • Ónody A., Csonka C., Giricz Z., Ferdinandy P., 2003. Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat heart. Cardiovasc. Res. 58, 663-670.
  • Patel H. V., Kalia K., 2010. Sub-chronic arsenic exposure aggravates nephrotoxicity in experimental diabetic rats. Ind. J. Exp. Biol. 48, 762-768.
  • Pattison D. I., Davies M. J., 2004. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 43, 4799, 4800.
  • Piwowar A., 2010. Zaawansowane produkty utleniania białek. Część I. Mechanizm powstawania, struktura i właściwości. Polski Merkuriusz Lekarski 28, 166-169.
  • Ponczek M.B., Wachowicz B., 2005. Oddziaływanie reaktywnych form tlenu i azotu z białkami. Post. Biochem. 51, 140-144.
  • Schöneich C., 2000. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharmaceut. Biomed. Anal. 21, 1093-1094.
  • Shacter E., 2000. Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 32, 307-326.
  • Sochaski M. A., Jenkins A. J., Lyons T. J., Thorpe S. R., Baynes J. W., 2001. Isotope dilution gas chromatography/ mass spectrometry method for the determination of methionine sulfoxide in protein. Analyt. Chem. 73, 4662-4667.
  • Stadtman E. R., Levine R. L., 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207-218.
  • Szuba A., Wojtaszek P., 2010. Modyfikacje strukturalne białek wywołane przez tlenek azotu. Post. Biochem. 56, 107-112.
  • Türközkan N., Seven I., Erdamar H., Çimen B., 2005. Effect of vitamin A pretreatment on Escherichia coli- induced lipid peroxidation and level of 3-nitrotyrosine in kidney of guinea pig. Mol. Cell. Biochem. 278, 33-37.
  • Uchida K., Kawakishi S., 1993. 2-Oxo-histidine as a novel biological marker for oxidativelymodified proteins. Fed. Europ. Biochem. Soc. 332, 208-210.
  • Włodek L., Iciek M., 2003. S-tiolacja białek jako mechanizm antyoksydacyjnej regulacji. Post. Biochem. 49, 78-79.
  • Wu W., Chen Y., Avignon A., Hazen S. L., 1999. 3-Bromotyrosine and 3,5-Dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil - dependent tissue injury in vivo. Biochemistry 38, 3539-3548.
  • Youngman L. D., Park J.-Y. K., Ames B. N., 1992. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Med. Sci. 89, 9112-9116.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p347kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.