PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 2 | 335-346
Article title

Kultury zawiesinowe komórek jako model do badania tolerancji roślin na metale ciężkie

Content
Title variants
EN
Cell suspension cultures as a model in studies of plant tolerance to heavy metals
Languages of publication
PL EN
Abstracts
PL
Zanieczyszczenia gleby metalami ciężkimi mają toksyczne działanie na rośliny, zwierzęta oraz człowieka. Metalofity, rośliny odporne na metale ciężkie, kolonizujące tereny metalonośne, są wykorzystywane do fitoremediacji, czyli oczyszczania gleb z metali ciężkich.
Wykorzystanie roślinnych kultur komórkowych do badań nad toksycznością metali i tolerancją komórek na ich działanie jest stosunkowo nową techniką. W pracy zostały przedstawione możliwości wykorzystania roślinnych kultur zawiesinowych w badaniach nad wpływem metali ciężkich na metabolizm komórek oraz metody oszacowania ich toksycznego wpływu. Zaprezentowane zostały techniki otrzymywania kultur zawiesinowych, oceny żywotności komórek, akumulacji metali ciężkich w komórkach. W ocenie toksyczności metali stosuje się także badania nad programowaną śmiercią komórki (PCD), co pozwala oszacować reakcję komórek na ich wysokie stężenia. Zostały przedyskutowane mechanizmy tolerancji komórek na metale ciężkie. Kultury zawiesinowe są dobrym modelem do badań tolerancji na metale, ponieważ pozwalają zbadać ich wpływ na pojedyncze komórki w jednolitych, stałych warunkach.
EN
Soil pollutants exert toxic effects on plants, animals and humans. Metallophytes, plants tolerant to heavy metals colonizing polluted areas, are being used to phytoremediation - cleaning up soil contaminated with heavy metals.
The use of plant cells in vitro cultures to study heavy metal toxicity and tolerance is a relatively new approach in research of metal toxicity. In this paper the usefulness of plant suspension cultures to study the impact of heavy metals on cells is presented alongside with the methods of obtaining suspension cultures, evaluation of cell viability, metal accumulation and detection of programmed cell death (PCD). The mechanisms by which cells of plant species tolerant to heavy metals develop resistance to metal toxicity are discussed. Cell suspension cultures appear to be a good model to study tolerance to heavy metals because they allow to estimate metal impact to a single cell in stable uniform conditions.
Journal
Year
Volume
67
Issue
2
Pages
335-346
Physical description
Dates
published
2018
Contributors
  • Zakład Cytologii i Embriologii Roślin, Instytut Botaniki, Wydział Biologii, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University,, 9 Gronostajowa Str., 30-387 Cracow, Poland
author
  • Zakład Cytologii i Embriologii Roślin, Instytut Botaniki, Wydział Biologii, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University,, 9 Gronostajowa Str., 30-387 Cracow, Poland
  • Zakład Cytologii i Embriologii Roślin, Instytut Botaniki, Wydział Biologii, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University,, 9 Gronostajowa Str., 30-387 Cracow, Poland
References
  • Agbogidi O. M., Mariere A. E., Ohwo O. A., 2013. Metal concentration in plant tissues of Jatropha curcas L. grown in crude oil contaminated soil. Int. J. Sustain. Future Human Secur. 32, 404-411.
  • Antosiewicz D. M., 1992. Adaptation of plants to an environment polluted with heavy metals. Acta Soc. Botan. Pol. 61, 281-299.
  • Baranowska-Morek A., 2003. Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich. Kosmos 52, 283-298.
  • Baranowska-Morek A., Wierzbicka M., 2004. Localization of lead in root tip of Dianthus carthusianorum. Acta Biol. Cracov. Ser. Botan. 46, 45-56.
  • Bernabé-Antonio A., Alvarez L., Buendía-Gonzáles L., Maldonado-Magaña A., Cruz-Sosa F., 2015. Accumulation and tolerance of Cr and Pb using a cell suspension culture system of Jatropha curcas. Plant Cell Tissue Organ Cult. 120, 221-228.
  • Bothe H., 2011. Plants in heavy metal soils. [W:] Detoxification of heavy metals, soil biology 30. Sherameti I., Varma A. (red.). Springer-Verlag, Berlin Heidelberg, doi: 10.1007/978-3-642-21408-0_2.
  • Brookers A., Collins J. C., Thurman D. A., 1981. The mechanism of zinc tolerance in grasses. J. Plant Nutrit. 3, 695-705.
  • Buendía-Gonzáles L., Orozco-Villafuerte J., Estrada-Zúñiga M. E., Barrera Díaz C. E., Vernon-Carter E. J., Cruz-Sosa F., 2010. In vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Rev. Met. Ing. Quím. 9, 1-9.
  • Byth H. A., Mchunu B. I., Dubery I. A., Bornman L., 2001. Assessment of a simple, non-toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochem. Anal. 12, 340-346.
  • Cegiełkowska W., Michalska-Kocymirow M., Wierzbicka M., 2015. Metale ciężkie w środowisku. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 23-51.
  • Çetİn E. S., Göktürk-Baydar N., 2016. Elicitor applications to cell suspension culture for production of phenolic compounds in grapevine. Tarim Bilimleri Dergisi 22, 42-53.
  • Çetİn E. S., Babalık Z., Hallaç-Türk F., Göktürk-Baydar N., 2014. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures. Biol. Res. 47, 47-52.
  • Charzyńska M., Simeonova E., Sikora A., Mostowska A., Leśniewska J., 2000. Application of the comet assay in studies of Programmed Cell Death (PCD) in plants. Acta Soc. Botan. Pol. 69, 101-107.
  • Cumming J. R., Taylor G. J., 1990. Mechanisms of metal tolerance in plants: Physiological adaptations for exclusion of metal ions from the cytoplasm. [W:] Stress responses in plants: adaptation and acclimation mechanisms. Alscher R. G., Cumming J. R. (red.). Wiley-Liss. Inc, 329-359.
  • De Michele R., Vurro E., Rigo C., Costa A., Elviri L., Di Valentin M., Careri M., Zottini M., Sanita di Toppi L., Lo Schiavo F., 2009. Nitric oxide is involved in cadmium-induced Programmed Cell Death in Arabidopsis suspension culture. Plant Physiol. 150, 217-228.
  • Dodds J. H., 1983. The use of protoplast technology in tissue culture of trees. [W:] Tissue culture of trees. Dodds J. H. (red.). Boston, Ma, 103-112.
  • Dörnenburg H., Knorr D., 1997. Challenges and opportunities for metabolite production from plant cell and tissue culture. Food Technol. 51, 47-53.
  • Dronnet V. M., Renard C. M. G. C., Axelos M. A. V., Thibault J. F., 1996. Heavy metals winding by pectins: selectivity, quantification and characterization. Carbohyd. Polym. 30, 253-263.
  • El-Maarouf-Bouteau H., Mazuy C., Corbineau F., Bailly C., 2011. DNA alteration and programmed cell death during ageing of sunflower seed. J. Exp. Bot. 62, 5003-5011.
  • Emamverdian A., Ding Y., Mokhberdoran F., Xie Y., 2015. Heavy metal stress and some mechanisms of plant defense response. Scient. World J., doi: 10.1155/2015/756120.
  • Fernandez-Da Silva R., Menéndez-Yuffá A., 2006. Viability in protoplasts and cell suspension of Coffea arabica cv. Catimor. Electr. J. Biotechnol., doi: 10.2225/vol9-issue5-fulltext-4.
  • Grodzińska K., Szarek-Łukaszewska G., 2002. Hałdy cynkowo-ołowiowe w okolicach Olkusza - przeszłość, teraźniejszość i przyszłość. Kosmos 51, 127-138.
  • Hatsugai N., Yamada K., Goto-Yamada S., Hara-Nishimura I., 2015. Vacuolar processing enzyme in plant programmed cell death. Front. Plant Sci., doi: 10.3389/fpls.2015.00234.
  • Helmersson A., Von Arnold S., Bozhkov P. V., 2008. The level of free intracellular zinc mediates Programmed Cell Death/cell survival decisions in plant embryos. Plant Physiol. 147, 1158-1167.
  • Hossain M. A., Piyatida P., Teixeira de Silva J. A., Fujita M., 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Botan., doi: 10.1155/2012/872875.
  • Huang W., Yang X., Yao S., LwinOo T., He H., Wang A., Li C., He L., 2014. Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiol. Biochem. 82, 76-84.
  • Izmaiłow R., Kościńska-Pająk M., Kwiatkowska M., Musiał M., 2015. Wpływ metali ciężkich na procesy reprodukcyjne roślin. [W:] Ekotoksykologia. Rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 96-114.
  • Jędrzejczyk M., Rostański A., Małkowski E., 2002. Accumulation of zinc and lead in selected taxa of the genus Viola L. Acta Biol. Cracov. Ser. Botan. 44, 49-55.
  • John R., Ahmad P., Gadgil K., Sharma S., 2009. Heavy metal toxicity: Effect of plant growth, biochemical parameters and metal accumulation by Brassica juncea L.. Int. J. Plant Product. 3, 65-76.
  • Kieran P. M., MacLoughlin P. F., Malone D. M., 1997. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39-52.
  • Klein M. A., Sekimoto H., Milner M. J., Kochian L. V., 2008. Investigation of heavy metal hyperaccumulation at the cellular level: Development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol. 147, 2006-2016.
  • Krzciuk K., 2015. Hiperakumulatory roślinne - charakterystyka, badania i znaczenie praktyczne. Kosmos 64, 293-304.
  • Krzesłowska M., 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33, 35-51.
  • Kutrowska A., 2013. Roślinne transportery błonowe metali śladowych. Kosmos 62, 105-113.
  • Lam E., 2004. Controlled cell death, plant survival and development. Nat. Rev. Mol. Cell Biol. 5, 305-315.
  • Lam E., del Pozo O., 2000. Caspase-like protease involvement in the control of plant cell death. Plant Mol. Biol. 44, 417-428.
  • Levitt J., 1980. Response of plants to environmental stresses. Academic Press, New York.
  • Maldonado-Magaña A., Orozco-Villafuerte J., Buendia-Gonzales L., Estrada-Zuniga M. E., Bernabé-Antonio A., Cruz-Sosa F., 2013. Establishment of cell suspension cultures of Prosopis laevigata (Humb. & Bonpl. Ex Willd) M.C. Johnst to determine the effect of zinc on uptake and accumulation of lead. Rev. Met. Ing. Quím. 12, 489-498.
  • Małkowski E., 2015. Fitoremediacja metali ciężkich. [W:] Ekotoksykologia. Rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 469-506.
  • McCabe P. F., Leaver C. J., 2000. Programmed cell death in cell cultures. Plant Mol. Biol. 44, 359-368.
  • Meyers D. E., Kopittke P. M., Auchterlonie G. J., Webb R. I., 2009. Characterization of lead precipitate following uptake by roots of Brassica juncea. Environ. Tox. Chem. 28, 250-255.
  • Michno K., 2016. Obtaining stable cell suspension culture of Viola tricolor L. (Violaceae) to evaluate the impact of zinc and lead on cell survival. Book of abstracts of II International Student Conference of Cell Biology, 42.
  • Michno K., Słomka A., Kuta E. 2016a. Kultury zawiesinowe komórek Viola tricolor (Viola, Violaceae) jako model do badania tolerancji na wysokie stężenia metali ciężkich. [W:] Książka abstraktów. 57 Zjazd Polskiego Towarzystwa Botanicznego: Botanika - tradycja i nowoczesność. Szczuka E., Szymczak G., Śmigała M., Marciniec R. (red.). Polskie Towarzystwo Botaniczne, 187-188.
  • Michno K., Szklarzewicz J., Drwal E., Słomka A., Kuta E., 2016b. Wpływ warunków kultury na żywotność komórek roślinnych w kulturze zawiesinowej po aplikacji soli ołowiu. [W:] X Conference in vitro cultures in plant physiology. Acta Biol. Cracov. Ser. Botan. 58, 25.
  • Michno K., Ślązak B., Göransson U., Słomka A., Kuta E., 2017. Do cyclotides, cystine-rich cyclic peptides, play a role in heavy metal tolerance in facultative metallophyte Viola tricolor L.?. Book of abstracts of III International Students Conference of Cell Biology, 68.
  • Misawa M., 1994. Plant tissue culture: an alternative for production of useful metabolites. FAO Agricult. Serv. Bull. 108, 89.
  • Muszyńska E., Kałużny K., Hanus-Fajerska E., 2014. Phenolic compounds in Hippophaë rhamnoides leaves collected from heavy metals contaminated sites. [W:] Plants in urban areas and landscape. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, 11-14.
  • Okem A., Southway C., Stirk W. A., Street R. A., Finnie J. F., Van Staden J., 2015. Effect of cadmium and aluminum on growth, metabolite content and biological activity in Drimia elata (Jacq.) Hyacinthaceae. South Afr. J. Bot. 98, 142-147.
  • Olvera-Carillo Y., Van Bel M., Van Hautegem T., Fendrych M., Huysmans M., Simaskova M., van Durme M., Buscaill P., Rivas S., Coll N. S., Coppens F., Maere S., Nowack M. K., 2015. A conserved core of Programmed Cell Death indicator genes discriminates developmentally and environmentally induced Programmed Cell Death in plants. Plant Physiol. 169, 2684-2699.
  • Padmavathiamma P. K., Li L. Y., 2007. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut. 184, 105-126.
  • Petrov V., Hille J., Mueller-Roeber B., Gechev T. S., 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6, 69-84.
  • Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C., 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32, 539-548.
  • Poborilova Z., Opatrilova R., Babula P., 2013. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 91, 1-11.
  • Rampersad S. N., 2012. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12, 12347-12360.
  • Rascio N., Navari-Izzo F., 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180, 169-181.
  • Rostański A., Nowak T., Jędrzejczyk-Korycińska M. 2015. Metalolubne gatunki roślin naczyniowych we florze Polski. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 299-322.
  • Rucińska-Sobkowiak R., Pukacki S., 2006. Antioxidative defence system in lupin roots exposed to increasing concentrations of lead. Acta Physiol. Plant. 28, 357-364.
  • Ryu D. D. Y., Lee S. O., Romani R. J., 1990. Determination of growth rate for plant cell cultures: Comparative studies. Biotechnol. Bioengine. 35, 305-311.
  • Seregin I. V., Kozhevnikova A. D., 2011. Histochemical methods for detection of heavy metals and strontium in the tissues of higher plants. Russ. J. Plant Physiol. 58, 721-727.
  • Siwek M., 2008a. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym. Część I. Pobieranie, transport i toksyczność metali ciężkich (śladowych). Wiad. Bot. 52, 7-22.
  • Siwek M., 2008b. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym. Część II. Mechanizmy detoksyfikacji i strategie przystosowania roślin do wysokich stężeń metali ciężkich. Wiad. Bot. 52, 7-23.
  • Słomka A., Kuta E., 2015. Fiołek trójbarwny - Viola tricolor L.. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 302-410.
  • Słomka A., Libik-Konieczny M., Kuta E., Miszalski Z., 2008. Metallifierous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J. Plant Physiol. 165, 1610-1619.
  • Słomka A., Kawalec M., Kellner K., Jędrzejczyk-Korycińska M., Rostański A., Kuta E., 2010. Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the test applied?. Acta Biol. Cracov. Ser. Bot. 52, 123-127.
  • Słomka A., Śliwińska D., Wolny E., Kellner K., Kuta E., 2011. Influence of heavy-metal-polluted environment on Viola tricolor genome size and chromosome number. Acta Biol. Cracov. Ser. Botan. 53, 7-15.
  • Słomka A., Godzik B., Szarek-Łukaszewska G., Shuka L., Hoef-Emden K., Bothe H., 2015. Albanian violets of the section Melanium, their morphological variability, genetic similarity and their adaptations to serpentine or chalk soils. J. Plant Physiol. 174, 110-123.
  • Sobkowiak R., Deckert J., 2004. The effect of cadmium on cell cycle control in suspension culture cells of soybean. Acta Physiol. Plant. 26, 335-344.
  • Stevanović V., Tan K., Iatrou G., 2003. Distribution of the endemic Balkan flora on serpentine I. - obligate serpentine endemics. Plant Syst. Evol. 242, 149-170.
  • Stevanović B., Dražić G., Tomović G., Šinžar-Sekulić J., Melovski Lj., Novović I., Marković D. M., 2010. Accumulation of arsenic and heavy metals in some Viola species from an abandoned mine, Alchar, Republic of Macedonia (FYROM). Plant Biosyst. 144, doi: 10.1080/11263504.2010.492597.
  • Szarek-Łukaszewska G., Kapusta P., Grodzińska K., 2015. Roślinność galmanowa. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 323-334.
  • Szarek-Łukaszewska G., Nowak T., Grodzińska K., Kapusta P., Godzik B., 2015. Przyroda Olkuskiego Okręgu Rudnego. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 163-175.
  • Thangavel P., Long S., Minocha R., 2007. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea abies Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Organ Cult. 88, 201-216.
  • Tisserat B., Manthey J. A., 1996. In vitro sterile hydroponic culture to study iron chlorosis. J. Plant Nutr. 19, 129-143.
  • Ünal-Cevik I., Kilinc M., Can A., Gürsoy-Özdemir Y., Dalkara T., 2004. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke, doi: 10.1161/01.STR.0000136149.81831.c5.
  • van der Ent A., Baker A. J. M., Reeves R. D., Pollard A. J., Schat H., 2015. Commentary: Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front. Plant Sci. 6, 554-556.
  • Van Doorn W. G., Beers E. P., Dangl J. L., Franklin-Tong V. E., Gallois P., Hara-Nishimura I., Jones A. M., Kawai-Yamada M., Lam E., Mundy J., Mur L. A., Petersen M., Smertenko A., Taliansky M., Van Breusegem F., Wolpert T., Woltering E., Zhivotovsky B., Bozhkov P. V., 2011. Morphological classification of plant cell deaths. Cell Death Differ. 18, 1241-1246.
  • Versleyen H., Samyn G., Van Bockstaele E., Debergh P., 2004. Evaluation of analytical techniques to predict viability after cryopreservation. Plan Cell Tissue Organ Cult. 77, 11-21.
  • Viehweger K., 2014. How plants cope with heavy metals. Bot. Studies 55, 35-46.
  • Vollenweider P., Cosio C., Günthardt-Goerg M. S., Keller C., 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II. Microlocalization and cellular effects of cadmium. Environ. Exp. Bot. 58, 25-40.
  • Wierzbicka M., 2002. Przystosowania roślin do wzrostu na hałdach ołowiowo-cynkowych okolic Olkusza. Kosmos 51, 139-150.
  • Wierzbicka M., 2015. Obrona roślin przed metalami ciężkimi. [W:] Ekotoksykologia - rośliny, gleby, metale. Wierzbicka M. (red.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 83-95.
  • Wierzbicka M., Rostański A., 2002. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A Review. Acta Biol. Cracov. Ser. Bot. 44, 7-19.
  • Wierzchowiecka M., Samardakiewicz S., Woźny A., 2008. Programowana śmierć komórki roślinnej - proces o 'wielu twarzach', Kosmos 57, 43-52.
  • Willats W. G. T., Knox J. P., Mikkelsen J. D., 2006. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17, 97-104.
  • Woźny A., Zatorska B., Młodzianowski F., 1982. Influence of Pb on the development of lupin seedlings and ultrastructural localization of this metal in the roots. Acta Soc. Botan. Pol. 5, 345-351.
  • Wuana R. A., Okieimen F. E., 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, doi.org/10.5402/2011/402647.
  • Xu H., Xu W., Xi H., Ma W., He Z., Ma M., 2013. The ER luminal binding protein (BiP) alleviates Cd(2+)-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells. J. Plant Physiol. 170, 1434-1441.
  • Yakimova E. T., Kapchina-Toteva V. M., Laarhoven L. J., Harren F. M., Woltering E. J., 2006. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol. Biochem. 44, 581-589.
  • Yakimova E., Kapchina-Toteva V. M., Woltering E. J., 2007. Signals transduction events in aluminum-induced cell death in tomato suspension cells. J. Plant Physiol. 164, 702-708.
  • Ye Y., Li Z., Xing D., 2013. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ. 36, 1-15.
  • Yue W., Ming Q., Lin B., Rahman K., Zheng C., Han T., Qin L., 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 36, 215-232.
  • Zhang L. R., Xu Q. X., Xing D., Gao C. J., Xiong H. W., 2009. Real-time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet C overexposure. Plant Physiol. 150, 1773-1783.
  • Zhao J. L., Zhou L. G., Wu J. Y., 2010. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl. Microbiol. Biotechnol. 87, 137-144.
  • Zhu L., Cullen W. R., 1995. Effects of some heavy metals on cell suspension cultures of Catharanthus roseus. J. Environ. Sci. 7, 60-65.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p335kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.