Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 31-41

Article title

Filamenty cienkie i mikrofilamenty - funkcjonalne kompleksy aktyny z tropomiozyną

Content

Title variants

EN
Thin filaments and microfilaments - functional complexes of actin and tropomyosin

Languages of publication

PL EN

Abstracts

PL
Aktyna jest uniwersalnym białkiem o strukturze dobrze zachowanej w toku ewolucji. W komórkach aktyna istnieje w równowadze pomiędzy formą monomeryczną i filamentową. Pomimo zachowanej w toku ewolucji struktury, aktyna pełni zdumiewająco wiele różnorodnych funkcji. Jest to możliwe dzięki zdolności aktyny do oddziaływania z wieloma białkami, wśród których znajdują się motory miozynowe oraz białka regulujące dynamiczną polimeryzację i depolimeryzację aktyny. Nadrzędnymi regulatorami filamentów aktynowych są tropomiozyny, rodzina superhelikalnych białek, które polimeryzują wzdłuż filamentowej aktyny, dzięki czemu stabilizują filamenty zapobiegając ich depolimeryzacji oraz kontrolują dostęp i aktywność białek wiążących aktynę. Tropomiozyny działają jako "stróże" filamentu, którzy kontrolują oddziaływania aktyny, co prowadzi do segregacji białek wiążących aktynę do swoistych przedziałów komórkowych gdzie białka te realizują określone funkcje komórkowe. W artykule zostały omówione zależne od tropomiozyny mechanizmy regulacji oddziaływań aktyny z niektórymi miozynami oraz z Arp2/3 i kofiliną - białkami, które inicjują rozgałęzianie, polimeryzację i depolimeryzację filamentów aktynowych.
EN
Actin is a universal protein highly conserved in evolution. In cells, actin exists in equilibrium between a monomeric and filamentous form. In spite of a conservative structure, actin plays amazingly versatile functions. This is possible due to its interactions with numerous actin-binding proteins, among them with myosin motors and proteins regulating dynamic polymerization and depolymeriation of actin. Tropomyosins, superhelical proteins, which polymerize along the filament and stabilize actin by preventing its depolymerization, are superior actin filament regulators. Tropomyosins control the access and activity of various actin-binding proteins. Tropomyosins act thus as actin “gate-keepers” which control actin interactions leading to the segregation of actin-binding proteins into specific cell compartments where they perform specific cellular functions. This article discusses tropomyosin-dependent mechanisms of regulation of actin interactions with some myosins as well as Arp2/3 and cofilin - the proteins, which initiate branching, polymerization and depolymerization of actin filaments.

Journal

Year

Volume

67

Issue

1

Pages

31-41

Physical description

Dates

published
2018

Contributors

  • Zakład Biochemii i Biologii Komórki, Wydział Nauk Przyrodniczych, Uniwersytet Kazimierza Wielkiego, Poniatowskiego 12, 85-671 Bydgoszcz, Polska
  • Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, 12 Poniatowski Str., 85-671 Bydgoszcz,, Poland

References

  • Balasubramanian M. K., Helfman D. M., Hemmingsen S. M., 1992. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 360, 84-87.
  • Barua B., 2013. Periodicities designed in the tropomyosin sequence and structure define its functions. Bioarchitecture 3, 51-56.
  • Barua B., Winkelmann D. A., White H. D., Hitchcock-Degregori S. E., 2012. Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Proc. Natl. Acad. Sci. USA 109, 18425-18430.
  • Barua B., Nagy A., Sellers J. R., Hitchcock-Degregori S. E., 2014. Regulation of nonmuscle myosin II by tropomyosin. Biochemistry 53, 4015-4024.
  • Bernstein B. W., Bamburg J. R., 1982. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 2, 1-8.
  • Blanchoin L., Pollard T. D., Hitchcock-Degregori S. E., 2001. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11, 1300-1304.
  • Brayford S., Bryce N. S., Schevzov G., Haynes E. M., Bear J. E., Hardeman E. C., Gunning P. W., 2016. Tropomyosin promotes lamellipodial persistence by collaborating with arp2/3 at the leading edge. Curr. Biol. 26, 1312-1318.
  • Bryce N. S., Schevzov G., Ferguson V., Percival J. M., Lin J. J., Matsumura F., Bamburg J. R., Jeffrey P. L., Hardeman E. C., Gunning P., Weinberger R. P., 2003. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14, 1002-1016.
  • Bugyi B., Didry D., Carlier M. F., 2010. How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach. EMBO J. 29, 14-26.
  • Carlier M. F., Pernier J., Montaville P., Shekhar S., Kuhn S., Cytoskeleton D., Motility G., 2015. Control of polarized assembly of actin filaments in cell motility. Cell. Mol. Life Sci. 72, 3051-3067.
  • Clayton J. E., Sammons M. R., Stark B. C., Hodges A. R., Lord M., 2010. Differential regulation of unconventional fission yeast myosins via the actin track. Curr. Biol. 20, 1423-1431.
  • Clayton J. E., Pollard L. W., Murray G. G., Lord M., 2015. Myosin motor isoforms direct specification of actomyosin function by tropomyosins. Cytoskeleton 72, 131-145.
  • Coulton A. T., East D. A., Galinska-Rakoczy A., Lehman W., Mulvihill D. P., 2010. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J. Cell. Sci. 123, 3235-3243.
  • Creed S. J., Bryce N., Naumanen P., Weinberger R., Lappalainen P., Stehn J., Gunning P., 2008. Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur. J. Cell Biol. 87, 709-720.
  • Desmarais V., Ichetovkin I., Condeelis J., Hitchcock-Degregori S. E., 2002. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115, 4649-4660.
  • Dominguez R., Holmes K. C., 2011. Actin structure and function. Annu. Rev. Biophys. 40, 169-186.
  • Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C., 1992. Tightly-bound divalent cation of actin. J. Muscle Res. Cell Motil. 13, 272-284.
  • Fan X., Martin-Brown S., Florens L., Li R., 2008. Intrinsic capability of budding yeast cofilin to promote turnover of tropomyosin-bound actin filaments. PLoS One 3, e3641.
  • Fanning A. S., Wolenski J. S., Mooseker M. S., Izant J. G., 1994. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. Cell Motil. Cytoskeleton 29, 29-45.
  • Fattoum A., Hartwig J. H., Stossel T. P., 1983. Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry 22, 1187-1193.
  • Fowler V. M., Sussmann M. A., Miller P. G., Flucher B. E., Daniels M. P., 1993. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120, 411-420.
  • Fujii T., Iwane A. H., Yanagida T., Namba K., 2010. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467, 724-728.
  • Gateva G., Kremneva E., Reindl T., Kotila T., Kogan K., Gressin L., Gunning P. W., Manstein D. J., Michelot A., Lappalainen P., 2017. Tropomyosin isoforms specify functionally distinct actin filament populations in vitro. Curr.Biol. 27, 705-713.
  • Geeves M. A., Hitchcock-Degregori S. E., Gunning P. W., 2015. A systematic nomenclature for mammalian tropomyosin isoforms. J. Muscle. Res. Cell Motil. 6, 147-153.
  • Gimona M., 2008. Dimerization of tropomyosins. Adv. Exp. Med. Biol. 644, 73-84.
  • Gordon A. M., Homsher E., Regnier M., 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853-924.
  • Gunning P., O'Neill G., Hardeman E., 2008. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 88, 1-35.
  • Heissler S. M., Manstein D. J., 2013. Nonmuscle myosin-2: mix and match. Cell. Mol. Life. Sci. 70, 1-21.
  • Hitchcock-Degregori S. E., 2008. Tropomyosin: function follows structure. Adv. Exp. Med. Biol. 644, 60-72.
  • Hitchcock-DeGregori S. E., Singh A., 2010. What makes tropomyosin an actin binding protein? A perspective. J. Struct. Biol. 170, 319-324.
  • Hodges A. R., Krementsova E. B., Bookwalter C. S., Fagnant P. M., Sladewski T. E., Trybus K. M., 2012. Tropomyosin is essential for processive movement of a class V myosin from budding yeast. Curr. Biol. 22, 1410-1416.
  • Holmes K. C., Popp D., Gebhard W., Kabsch W., 1990. Atomic model of the actin filament. Nature 347, 44-49.
  • Hsiao J. Y., Goins L. M., Petek N. A., Mullins R. D., 2015. Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin networks. Curr. Biol. 25, 1573-1582.
  • Hundt N., Steffen W., Pathan-Chhatbar S., Taft M. H., Manstein D. J., 2016. Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Sci. Rep. 6, 20554.
  • Ishikawa R., Yamashiro S., Matsumura F., 1989a. Annealing of gelsolin-severed actin fragments by tropomyosin in the presence of Ca2+. Potentiation of the annealing process by caldesmon. J. Biol. Chem. 264, 16764-16770.
  • Ishikawa R., Yamashiro S., Matsumura F., 1989b. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J. Biol. Chem. 264, 7490-7497.
  • Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C., 1990. Atomic structure of the actin: DNase I complex. Nature 347, 37-44.
  • Kalyva A., Schmidtmann A., Geeves M.A., 2012. In vitro formation and characterization of the skeletal muscle α·β tropomyosin heterodimers. Biochemistry 51, 6388-6399.
  • Kis-Bicskei N., Vig A., Nyitrai M., Bugyi B., Talian G. C., 2013. Purification of tropomyosin Br-3 and 5NM1 and characterization of their interactions with actin. Cytoskeleton 70, 755-765.
  • Kovar D. R., Sirotkin V., Lord M., 2011. Three's company: the fission yeast actin cytoskeleton. Trends. Cell Biol. 21, 177-187.
  • McIntosh B. B., Ostap E. M., 2016. Myosin-I molecular motors at a glance. J. Cell Sci. 129, 2689-2695.
  • McKillop D. F., Geeves M. A., 1993. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65, 693-701.
  • Moraczewska J., Wawro B., Seguro K., Strzelecka-Golaszewska H., 1999. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys. J. 77, 373-385.
  • Murakami K., Yasunaga T., Noguchi T. Q., Gomibuchi Y., Ngo K. X., Uyeda T. Q., Wakabayashi T., 2010. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143, 275-287.
  • Nakano K., Mabuchi I., 2006. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol. Biol. Cell 17, 1933-1945.
  • Oda T., Iwasa M., Aihara T., Maeda Y., Narita A., 2009. The nature of the globular- to fibrous-actin transition. Nature 457, 441-445.
  • Ono S., Ono K., 2002. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J. Cell Biol. 156, 1065-1076.
  • Ostap E. M., 2008. Tropomyosins as discriminators of myosin function. Adv. Exp. Med. Biol. 644, 273-282.
  • Ostrowska Z., Moraczewska J., 2017. Cofilin - a protein controlling dynamics of actin filaments. Post. Hig. Med. Dosw. 71, 339-351.
  • Ostrowska Z., Robaszkiewicz K., Moraczewska J., 2017. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. Biochim. Biophys. Acta 1865, 88-98.
  • Pathan-Chhatbar S., Taft M. H., Reindl T., Hundt N., Latham S. L., Manstein D. J., 2018. Three mammalian tropomyosin isoforms have different regulatory effects on nonmuscle myosin-2B and filamentous beta-actin in vitro. J. Biol. Chem. 293, 863-875.
  • Pizarro-Cerda J., Chorev D. S., Geiger B., Cossart P., 2017. The Diverse Family of Arp2/3 Complexes. Trends Cell Biol. 27, 93-100.
  • Pollard L. W., Lord M., 2014. Getting myosin-V on the right track: tropomyosin sorts transport in yeast. Bioarchitecture 4, 35-38.
  • Pollard T. D., Weeds A. G., 1984. The rate constant for ATP hydrolysis by polymerized actin. FEBS Lett. 170, 94-98.
  • Pollard T. D., Borisy G. G., 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
  • Reisler E., Egelman E. H., 2007. Actin structure and function: what we still do not understand. J. Biol. Chem. 282, 36133-36137.
  • Robaszkiewicz K., Ostrowska Z., Marchlewicz K., Moraczewska J., 2016. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J. 283, 723-737.
  • Schleicher M., Jockusch B. M., 2008. Actin: its cumbersome pilgrimage through cellular compartments. Histochem. Cell Biol. 129, 695-704.
  • Shutova M. S., Spessott W. A., Giraudo C. G., Svitkina T., 2014. Endogenous species of mammalian nonmuscle myosin IIA and IIB include activated monomers and heteropolymers. Curr. Biol. 24, 1958-1968.
  • Skau C. T., Neidt E. M., Kovar D. R., 2009. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol. Biol. Cell 20, 2160-2173.
  • Squire J. M., Paul D. M., Morris E. P., 2017. Myosin and Actin Filaments in Muscle: Structures and Interactions. Subcell. Biochem. 82, 319-371.
  • Stark B. C., Sladewski T. E., Pollard L. W., Lord M., 2010. Tropomyosin and myosin-II cellular levels promote actomyosin ring assembly in fission yeast. Mol. Biol. Cell 21, 989-1000.
  • Strand J., Nili M., Homsher E., Tobacman L.S. 2001. Modulation of myosin function by isoform-specific properties of Saccharomyces cerevisiae and muscle tropomyosins. J. Biol. Chem. 276, 34832-34839.
  • Strzelecka-Golaszewska H., Moraczewska J., Khaitlina S. Y., Mossakowska M., 1993. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur. J. Biochem. 211, 731-742.
  • Strzelecka-Golaszewska H., Wozniak A., Hult T., Lindberg U., 1996. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem. J. 316, 713-721.
  • Szent-Gyorgyi A. G., 2004. The early history of the biochemistry of muscle contraction. J. Gen. Physiol. 123, 631-641.
  • Śliwińska M., Robaszkiewicz K., Czajkowska M., Zheng W., Moraczewska J., 2018. Functional effects of substitutions I92T and V95A in actin-binding periods 3 of tropomyosin. Biochem. Biophys. Acta 1866, 558-568.
  • Tang N., Ostap E. M., 2001. Motor domain-dependent localization of myo1b (myr-1). Curr. Biol. 11, 1131-1135.
  • Tojkander S., Gateva G., Lappalainen P., 2012. Actin stress fibers--assembly, dynamics and biological roles. J. Cell Sci. 125, 1855-1864.
  • Vibert P., Craig R., Lehman W., 1997. Steric-model for activation of muscle thin filaments. J. Mol. Biol. 266, 8-14.
  • Vindin H., Gunning P., 2013. Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J. Muscle Res. Cell Motil. 34, 261-274.
  • Von Der Ecken J., Muller M., Lehman W., Manstein D. J., Penczek P. A., Raunser S., 2015. Structure of the F-actin-tropomyosin complex. Nature 519, 114-117.
  • Wawro B., Greenfield N. J., Wear M. A., Cooper J. A., Higgs H. N., Hitchcock-Degregori S. E., 2007. Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament. Biochemistry 46, 8146-8155.
  • Wegner A., 1976. Head to tail polymerization of actin. J. Mol. Biol. 108, 139-150.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.