Preferences help
enabled [disable] Abstract
Number of results
2018 | 67 | 2 | 263-273
Article title

Efekt lilipuci - typy, przyczyny i znaczenie dla organizmów znajdujących się pod działaniem niekorzystnych czynników środowiska

Title variants
Lilliput effect - types, causes and significance for organisms under unfavourable environmental conditions
Languages of publication
Efekt lilipuci (lub efekt Liliputa) w swojej pierwotnej wersji definiuje się jako odpowiedź adaptacyjną organizmu na pogorszenie się warunków środowiskowych, polegającą na pozdarzeniowym zmniejszeniu rozmiarów ciała osobników składających się na daną populację. Obecnie wyróżniamy cztery jego typy: preferencyjne przetrwanie taksonów o mniejszym rozmiarze ciała (wymieranie taksonów o dużych rozmiarach), karłowacenie taksonów o dużych rozmiarach, miniaturyzacja połączona z dodatkowymi zmianami morfologicznymi oraz efekt lilipuci połączony z efektem Łazarza. Jako główne przyczyny tego zjawiska wymienia się drastyczne zmiany temperatury (ocieplenie lub ochłodzenie klimatu), zmiany stopnia zasolenia mórz, zakwaszenie mórz, zubożenie środowiska w tlen (zjawiska anoksyczne oraz hipoksyczne), fluktuacje poziomu morza, utratę organizmów symbiotycznych, załamanie w produkcji pierwotnej oraz załamanie sieci troficznych. Efekt lilipuci rozpatrywany jest jednak jako skuteczna adaptacja do tego typu niekorzystnych warunków, ponieważ organizmy skarłowaciałe cechują się mniejszym zapotrzebowaniem na określone zasoby środowiska oraz szybciej osiągają dojrzałość płciową. Został on opisany u takich grupach organizmów jak kręgowce, bezkręgowce, protisty oraz rośliny.
In its original version, Lilliput effect (LE) is defined as adaptive response of an organism to the deterioration of environmental conditions, involving after-event reduction of individuals body size in a given population. Currently, four patterns of LE are considered - preferential survival of smaller taxa (extinction of large taxa), dwarfing of taxa, miniaturization combined with additional morphological changes, and LE combined with Lazarus effect. As the main reasons underlying this phenomenon are mentioned: drastic temperature changes (climate warming or cooling), changes in sea salinity, sea acidification, depletion in oxygen of environment (anoxic and hypoxic conditions), sea level fluctuations, loss of symbiotic organisms, collapse in primary production and of food webs. However, LE is considered as effective adaptation for this type of unfavorable conditions, because dwarfed organisms require lower demand for certain environmental resources and quickly reach sexual maturity. The Lilliput effect has been described for many groups of organisms such as vertebrates, invertebrates, protists and plants.
Physical description
  • Katedra Paleontologii i Stratygrafii, Wydział Nauk o Ziemi, Uniwersytet Śląski w Katowicach, Będzińska 60, 41-200 Sosnowiec, Polska
  • WNoZ UŚ - Centrum Studiów Polarnych KNOW (Krajowy Naukowy Ośrodek Wiodący), Będzińska 60, 41-200 Sosnowiec, Polska
  • Department of Paleontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia in Katowice, Będzińska 60,, 41-200 Sosnowiec, Poland
  • WNoZ UŚ - Centre for Polar Studies KNOW (Leading National Research Centre), Będzińska 60, 41-200 Sosnowiec, Poland
  • Allen J. A., 1877. The influence of Physical conditions in the genesis of species. Radic. Rev. 1, 108-140.
  • Alroy J., 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731-734.
  • Ausich W. I., Wilson M. A., 2016. Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia. J. Paleontol. 90, 1138-1147.
  • Baillie-Penn K. U., 2015. Mass extinction let tiny fish rule the seas.
  • Baliński A., Racki G., 1999. Wymieranie i odradzanie się faun ramienionogowych a kryzys na granicy fran-famen. Przegl. Geolog. 47, 373-378.
  • Benton M. J., Csiki Z., Grigorescu D., Redelstorff R., Sander P. M., Stein K., Weishampel D. B., 2010. Dinosaurs and the island rule: The dwarfed dinosaurs from Haţeg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438-454.
  • Bergmann C., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien 3, 595-708.
  • Blanckenhorn W. U., 2000. The evolution of body size: What keeps organisms small? Quart. Rev. Biol. 75, 385-407.
  • Blanckenhorn W. U., Demont M., 2004. Bergmann and converse Bergmann latitudinal clines in Arthropods: Two Ends of a Continuum? Integr. Compar. Biol. 44, 413-424.
  • Borths M. R., Ausich W. I., 2011. Ordovician-Silurian Lilliput crinoids during the end-Ordovician biotic crisis. Swiss J. Palaeontol. 130, 7-18.
  • Bosetti E. P., Grahn Y., Horodyski R. S., Mendlowicz-Mauller P., Breuer P., Zabini C., 2011. An earliest Givetian 'Lilliput Effect' in the Paraná Basin, and the collapse of the Malvinokaffric shelly fauna. Paläontologische Zeitschrift 85, 49-65.
  • Brom K. R., Brachaniec T., Salamon M. A., 2015a. Troglomorphism in the Middle Triassic crinoids from Poland. Sci. Nat. (Naturwissenschaften) 102, 60.
  • Brom K. R., Salamon M. A., Ferré B., Brachaniec T., Szopa K., 2015b. The Lilliput effect in crinoids at the end of the Oceanic Anoxic Event 2: A case study from Poland. J. Paleontol. 89, 1076-1081.
  • Brom K. R., Niedźwiedzki R., Brachaniec T., Ferré B., Salamon M. A., 2016. Environmental control on shell size of Middle Triassic bivalve Plagiostoma. Notebooks Geol. 16, 297-305.
  • Brook B. W., Bowman D. M. J. S., 2002. Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. Proc. Natl. Acad. Sci. USA 99, 14624-14627.
  • Buffetaut E., 2006. Continental Vertebrate extinctions at the Triassic-Jurassic and Cretaceous-Tertiary boundaries: a comparison. [W:] Biological processes associated with impact events. Cockell C., Gilmour I., Koeberl C. (red.) Springer Berlin Heidelberg, Berlin, 245-256.
  • Caldeira K., Akai M., 2005. Ocean storage. [W:] IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (red.). Cambridge University Press, New York, 277-318.
  • Calder W. A., 1996. Life history and body size. [W:] Size, function, and life history. Calder W. A. (red.). Dover Publications, INC., Mineola, Nowy Jork, 285-331.
  • Chatterjee R., Ghosh A. K., Kar R., Rao G. M. N., 2014. Dwarfism and Lilliput effect: a study on the Glossopteris from the late Permian and early Triassic of India. Curr. Sci. 107, 1735-1744.
  • Chen Z. Q., Kaiho K., George A. D., 2005. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 232-269.
  • Chen Y., Twitchett R. J., Jiang H., Richoz S., Lai X., Yan C., Sun Y., Liu X., Wang L., 2013. Size variation of conodonts during the Smithian-Spathian (Early Triassic) global warming event. Geology 41, 823-826.
  • Chu D., Tong J., Song H., Benton M. J., Song H., Yu J., Qiu X., Huang Y. Tian L., 2015. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38-52.
  • Cope E. D., 1896. The primary factors of organic evolution. Open Court Publishing Company, Chicago.
  • Fara E., 2001. What are Lazarus taxa? Geol. J. 36, 291-303.
  • Fitzpatrick S. M., Nelson G. C., Clark G., 2008. Small scattered fragments do not a dwarf make: Biological and archaeological data indicate that prehistoric inhabitants of Palau were normal sized. PLoS One 3, e3015.
  • Forel M. B., Crasquin S., Chitnarin A., Angiolini L., Gaetani M., 2015. Precocious sexual dimorphism and the Lilliput effect in Neo-Tethyan Ostracoda (Crustacea) through the Permian-Triassic boundary. Palaeontology 58, 409-454.
  • Foster J. B., 1964. The evolution of mammals on islands. Nature 202, 234-235.
  • Freckleton R. P., Harvey P. H., Pagel M., 2003. Bergmann's rule and body size in mammals. Am. Natural. 161, 821-825.
  • Garilli V., Rodolfo-Metalpa R., Scuderi D., Brusca L., Parrinello D., Rastrick S. P. S., Foggo A., Twitchett R. J., Hall-Spencer J. M., Milazzo M., 2015. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nat. Clim. Change 5, 678-682.
  • Girard C., Renaud S., 1996. Size variation in conodonts in response to the upper Kellwasser crisis (Upper Devonian of the Montagne Noire, France). Compt. Rend. l'Acad. Sci. Ser. IIA, Earth Planet. Sci. 323, 435-442.
  • Goffredo S., Prada F., Caroselli E., Capaccioni B., Zaccanti F., Pasquini L., Fantazzini P., Fermani S., Reggi M., Levy O., Fabricius K. E., Dubinsky Z., Falini G., 2014. Biomineralization control related to population density under ocean acidification. Nat. Clim. Change 4, 593-597.
  • Hautmann M., Nützel A., 2005. First record of a heterodont Bivalvia (Mollusca) from the Early Triassic: Palaeoecological significance and implications for the 'Lazarus problem'. Palaeontology 48, 1131-1138.
  • Hautmann M., Bucher H., Brühwiler T., Goudemand N., Kaim A., Nützel A., 2011. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44, 71-85.
  • Harries P. J., Knorr P. O., 2009. What does the 'Lilliput Effect' mean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4-10.
  • He W., Shi G. R., Feng Q., Campi M. J., Gu S., Bu J., Peng Y., Meng Y., 2007. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 145-163.
  • He W. H., Twitchett R. J., Zhang Y., Shi G. R., Feng Q. L., Yu J. X., Wu S. B., Peng X. F., 2010. Controls on body size during the Late Permian mass extinction event. Geobiology 8, 391-402.
  • Heim N. A., Knope M. L., Schaal E. K., Wang S. C., Payne J. L., 2015. Cope's rule in the evolution of marine animals. Science 347, 867-870.
  • Hoegh-Guldberg O., Mumby P. J., Hooten A. J., Steneck R. S., Greenfield P., Gomez E., Harvell C. D., Sale P. F., Edwards A. J., Caldeira K., Knowlton N., Eakin C. M., Iglesias-Prieto R., Muthiga N., Bradbury R. H., Dubi A., Hatziolos M. E., 2007. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737-1742.
  • Hone D. W., Benton M. J., 2005. The evolution of large size: how does Cope's Rule work? Trends Ecol. Evol. 20, 4-6.
  • Hotinski R. M., Bice K. L., Kump L. R., Najjar R. G., Arthur M. A., 2001. Ocean stagnation and end-Permian anoxia. Geology 29, 7-10.
  • Huang B., Harper D. A. T., Zhan R., Rong J., 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeogr. Palaeoclimatol. Palaeoecol. 285, 277-286.
  • Huttenlocker A. K., 2014. Body Size Reductions in Nonmammalian Eutheriodont Therapsids (Synapsida) during the End-Permian Mass Extinction. PLoS One 9, e87553.
  • Isozaki Y., Aljinović D., 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: End of gigantism in tropical seas by cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 11-21.
  • Jeffery C. H., 2001. Heart urchins at the Cretaceous-Tertiary boundary: a tale of two clades. Paleobiology 27, 140-158.
  • Kaljo D., 1996. Diachronous recovery patterns in Early Silurian corals, graptolites and acritarchs. Geol. Soc. London Spec. Publ. 102, 127-133.
  • Keller G., Abramovich S., 2009. Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 47-62.
  • Keppel G., Lowe A. J., Possingham H. P., 2009. Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. J. Biogeogr. 36, 1035-1054.
  • Kozłowski J., 1992. Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends Ecol. Evol. 7, 15-19.
  • Kozłowski J., 2006. Why life histories are diverse. Pol. J. Ecol. 54, 585-605.
  • Krebs C. J., 2011. Ekologia - eksperymentalna analiza rozmieszczenia liczebności. Wydawnictwo Naukowe PWN, Warszawa.
  • Leighton L. R., Schneider C. L., 2008. Taxon characteristics that promote survivorship through the Permian-Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna. Paleobiology 34, 65-79.
  • Lockwood R., 2005. Body size, extinction events, and the early cenozoic record of veneroid bivalves: A new role for recoveries? Paleobiology 31, 578-590.
  • Luo G., Lai X., Jiang H., Zhang K., 2006. Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337-347.
  • Luo G., Lai X., Shi G. R., Jiang H, Yin H., Xie S., Tong J., Zhang K., He W., Wignall P. B., 2008. Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 176-187.
  • Martínez-Díaz J. L., Phillips G. E., Nyborg T., Espinosa B., de Araújo Távora V., Centeno-García E., Vega F. J., 2016. Lilliput effect in a retroplumid crab (Crustacea: Decapoda) across the K/Pg boundary. J. South Am. Earth Sci. 69, 11-24.
  • Metcalfe B., Twitchett R. J., Price-Lloyd N., 2011. Changes in size and growth rate of 'Lilliput' animals in the earliest Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 171-180.
  • Morten S. D., Twitchett R. J., 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 29-38.
  • Mousseau T. A., 1997. Ectotherms follow the converse to Bergmann's rule. Evolution 51, 630-632.
  • Mutter R. J., Neuman A. G., 2009. Recovery from the end-Permian extinction event: Evidence from 'Lilliput Listracanthus'. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 22-28.
  • Novas F. E., Agnolín F. L., Ezcurra M. D., Porfiri J., Canale J. I., 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretaceous Res. 45,174-215.
  • Payne J. L., 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31, 269-290.
  • Raia P., Meiri S., 2006. The island rule in large mammals: paleontology meets ecology. Evolution 60, 1731-1742.
  • Renaud S., Girard C., 1999. Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser crisis (Upper Devonian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 146, 19-32.
  • Romano C., Koot M. B., Kogan I., Brayard A., Minikh A. V., Brinkmann W., Bucher H., Kriwet J., 2016. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. Cambridge Philosoph. Soc. 91, 106-147.
  • Salamon M. A., Brachaniec T., Brom K. R., Lach R., Trzęsiok D., 2016. Dwarfism of irregular echinoids (Echinocorys) from Poland during the Campanian-Maastrichtian Boundary Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 323-329.
  • Sallan L., Galimberti A. K., 2015. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812-815.
  • Schlanger S. O., Jenkyns H. C., 1976. Cretaceous Oceanic Anoxic Event: causes and consequences. Geologie en Mijnbouw 55, 179-184.
  • Schmidt D. N., Thierstein H. R., Bollmann J., 2004. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 159-180.
  • Shelomi M., 2012. Where are we now? Bergmann's rule sensu lato in insects. Am. Natural. 180, 511- 519.
  • Sigurdsen A., 2012. Size change in brachiopods and trilobites of the Oslo Region during the Ordovician and during the Ordovician-Silurian transition. Evidence of Cope's Rule and the Lilliput Effect? Praca magisterska, Wydział Biologii Uniwersytetu w Oslo, Oslo.
  • Sigurdsen A., Hammer Ø., 2016. Body size trends in the Ordovician to earliest Silurian of the Oslo Region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 49-56.
  • Sogot C. E., Harper E. M., Taylor P. D., 2014. The Lilliput Effect in Colonial Organisms: Cheilostome Bryozoans at the Cretaceous-Paleogene Mass Extinction. PLoS One 9, e87048.
  • Song H., Tong J., Chen Z. Q., 2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 98-110.
  • Timofeev S. F., 2001. Bergmann's principle and deep-water gigantism in marine crustaceans. Biol. Bull. Russian Acad. Sci. 28, 646-650.
  • Trammer J., 2002. Power formula for Cope's rule. Evol. Ecol. Res. 4, 147-153.
  • Twitchett R. J., 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 27-37.
  • Twitchett R. J., 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 190-213.
  • Twitchett R. J., 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132-144.
  • Twitchett R. J., Feinberg J. M., O'Connor D. D., Alvarez W., 2005. Early Triassic ophiuroids: their paleoecology, taphonomy and distribution. Palaios 20, 213-223.
  • Twitchett R. J., Oji T., 2005. Early Triassic recovery of echinoderms. Compt. Rend. Palevol. 4, 531-542.
  • Urbanek A., 1993. Biotic crises in the history of Upper Silurian graptoloids: A Palaeobiological model. Int. J. Paleobiol. 7, 29-50.
  • Van Valen L. M, 1973. Pattern and the balance of nature. Evol. Theory 1, 31-49.
  • Wade B. S., Peterson P. N., 2008. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Marine Micropaleontol. 68A, 244-255.
  • Wade B. S., Olsson R. K., 2009. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 39-46.
  • Wade B. S., Twitchett R. J., 2009. Extinction, dwarfing and the Lilliput effect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 1-3.
  • Yates A. M., Neumann F. H., Hancox P. J., 2012. The earliest Post-Paleozoic freshwater bivalves preserved in coprolites from the Karoo Basin, South Africa. PLoS One 7, e30228.
  • Yin H., Feng Q., Lai X., Baud A, Tong J., 2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Glob. Planet. Change 55, 1-20.
  • Yong E., 2014. Islands make animals tamer. Nat. News, doi:10.1038/nature.2014.14462.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.