PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 2 | 245-249
Article title

Mechanizm zegara biologicznego. Nagroda Nobla 2017 w dziedzinie fizjologii lub medycyny

Content
Title variants
EN
Mechanism of circadian clock. The 2017 Nobel Prize in physiology or medicine
Languages of publication
EN PL
Abstracts
EN
Since 1901, the Nobel Prize has been awarded to scientists who have made the most important discoveries for the benefit of humanity. The 2017 Nobel Prize in Physiology or Medicine was awarded jointly to Jeffrey C. Hall, Michael Rosbash and Michael W. Young “for their discoveries of molecular mechanisms controlling the circadian rhythm.” It may be surprising to learn that those three scientists dedicated their entire careers to research on the fruit fly, Drosophila melanogaster. However, as their studies progressed, it became increasingly clear that the mechanism of the biological clock that they discovered in Drosophila is very similar to a timekeeping mechanism present in mammals, including humans. Through interdisciplinary work between scientists performing basic research on model organisms and medical doctors, we have learned over time that daily rhythms support human health while disruption of these rhythms is associated with a range of pathological disorders such as cardiovascular problems, metabolic, neurological, and many other diseases. This short review highlights critical milestones on the way to understanding biological clocks, focusing on the roles played by the three Nobel Prize winners.
PL
Od roku 1901 Nagroda Nobla jest przyznawana naukowcom za najważniejsze odkrycia służące dobru ludzkosci. Nagrodę Nobla w dziedzinie fizjologii lub medycyny w 2017 roku otrzymali trzej amerykańscy uczeni Jeffrey C. Hall, Michael Rosbash i Michael W. Young "za odkrycie mechanizmu molekularnego, który kontroluje rytmy okołodobowe". Może się to wydać zaskakujące, ale ci trzej nobliści poświęcili swoje kariery naukowe badaniom nad muszką owocową, Drosophila melanogaster. Jednak w miarę postępu ich badań stawało się coraz bardziej oczywiste, że mechanizm zegara biologicznego, odkryty u muszki Drosophila, jest bardzo podobny do zegara, który posiadają ssaki, łącznie z człowiekiem. Interdyscyplinarna współpraca między naukowcami prowadzącymi badania podstawowe na organizmach modelowych i lekarzami prowadzącymi badania kliniczne ujawniła istotną rolę rytmów dobowych w utrzymaniu zdrowia człowieka. Dlugotrwałe zakłócenie tych rytmów stanowi czynnik ryzyka wielu patologii, takich jak choroby serca, cukrzyca, otyłość czy choroby układu nerwowego. Artykuł krótko podsumowuje odkrycia, stanowiące kamienie milowe na drodze poznania mechanizmu zegara biologicznego, ze szczególnym uwzględnieniem roli trzech noblistów 2017 w tym procesie.
Journal
Year
Volume
67
Issue
2
Pages
245-249
Physical description
Dates
published
2018
Contributors
  • Oregon State University, Department of Integrative Biology, 3029 Cordley Hall, Corvallis, OR 97331 USA, Polska
References
  • Allada R., White N. E., So W. V., Hall J. C., Rosbash M., 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791-804.
  • Balsalobre A., Damiola F., Schibler U., 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937.
  • Bargiello T. A., Young M. W., 1984. Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81, 2142-2146.
  • Brown S. A., 2016. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol. Metab. 27, 415-426.
  • Emery P., So V., Kaneko M., Hall J. C., Rosbash M., 1998. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669-679.
  • Gekakis N., Saez L., Sehgal A., Young M., Weitz C., 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PER. Science 270, 811-815.
  • Giebultowicz J. M., 2017. The circadian system and aging of Drosophila. [In:] Circadian Rhythms and Their Impact on Aging. Jazwinski S., Belancio V., Hill S. (eds.). Cham, Switzerland: Springer International Publishing AG, 129-145.
  • Giebultowicz J. M., Riemann J. G., Raina A. K., Ridgway R. L., 1989. Circadian system controlling release of sperm in the insect testes. Science 245, 1098-1100.
  • Hardin P. E., Hall J. C., Rosbash M., 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536-540.
  • Hege D. M., Stanewsky R., Hall J. C., Giebultowicz J. M., 1997. Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J. Biol. Rhythms 12, 300-308.
  • Konopka R. J., Benzer S., 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112-2116.
  • Musiek E. S., Holtzman D. M., 2016. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354, 1004-1008.
  • Reddy P., Zehring W. A., Wheeler D. A., Pirrotta V., Hadfield C., Hall J. C., Rosbash M., 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701-710.
  • Rutila J. E., Suri V., Le M., So V., Rosbash M., Hall J. C., 1998. CYCLE is a second bHLH-PAS Clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805-814.
  • Sehgal A., Price J., Man B., Youngs M., 1994. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603-1606.
  • Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C., 1988. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1, 141-150.
  • Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C., 1998. The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681-692.
  • Vitaterna M. H., King D. P., Chang A. M., Kornhauser J. M., Lowrey P. L., McDonald J. D., Dove W. F., Pinto L. H., Turek F. W., Takahashi J. S., 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719-725.
  • Vosshall L., Price J., Sehgal A., Saez L., Young M., 1994. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606-1609.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p245kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.