PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 1 | 219-232
Article title

Mikroskopowe metody badania cytoszkieletu

Content
Title variants
EN
Microscopy techniques for cytoskeleton resarch
Languages of publication
PL EN
Abstracts
PL
Cytoszkielet to sieć białkowych polimerów oraz związanych z nimi setek białek motorycznych, regulatorowych i łączących cytoszkielet z innymi strukturami komórkowymi. Rozwój wiedzy o cytoszkielecie jest nierozerwalnie zwiększany z postępem technik mikroskopowych używanych do jego obserwacji. Początki tych badań to niespecyficzne, nieskomplikowane barwienia utrwalonego materiału biologicznego, które później rozwinęły się w nowoczesną mikroskopię strukturalną, pozwalającą na precyzyjne znakowanie określonych białek tworzących cytoszkielet, badanie ich stanu fizjologicznego czy też oddziaływań cytoszkieletu z luźno związanymi białkami błony czy cytoplazmy. Obecnie możliwe jest nie tylko obrazowanie struktury i funkcji cytoszkieletu ze znacznie lepszą rozdzielczością przestrzenną, ale także prowadzenie tych obserwacji na żywym materiale biologicznym. Z drugiej strony, stabilność cytoszkieletu umożliwia poszukiwanie nowych metod jego obrazowania, co niewątpliwie należy do kół napędowych postępu, jaki dokonał się i wciąż dokonuje się w dziedzinie mikroskopii.
EN
Cytoskeleton is basically a network of protein polymers, but it also contains thousands of motor, regulatory and scaffolding proteins that interact with this network. Discoveries related to the cytoskeleton were strictly connected to the development of microscopy techniques used to observe the cytoskeletal structures. At first, the imaging involved only unspecific, very simple staining of fixed material. Then, the methods evolved into advanced structural microscopy, which enabled accurate detection of specific cytoskeletal proteins, their physiological status, and interactions with loosely bound membrane and cytoplasmic proteins. Today, it is possible not only to visualize the structure and function of the cytoskeleton with better spatial resolution but also to perform the imaging in vivo on live biological specimens. On the other hand, one should also notice that observations of the stable, well defined cytoskeletal structures from their very discovery have continuously stimulated the progress in the microscopy field.
Journal
Year
Volume
67
Issue
1
Pages
219-232
Physical description
Dates
published
2018
Contributors
author
  • Pracownia Obrazowania Struktury i Funkcji Tkankowych, Centrum Neurobiologii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Imaging Tissue Structure and Function, Neurobiology Center, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
  • Pracownia Molekularnych Podstaw Ruchów Komórkowych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Środowiskowe Multimodalne Laboratorium Adhezji i Ruchu Komórek, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
  • Multimodal Laboratory of Cell Adhesion and Motility, NanoBioGeo Consortium, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
References
  • Agronskaia A. V., Valentijn J. A., van Driel L. F., Schneijdenberg C. T. W. M., Humbel B. M., van Bergen en Henegouwen P. M. P., Verkleij A. J., Koster A. J., Gerritsen H. C., 2008. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol. 164, 183-189.
  • Andersen R. A., Barr D. J. S., Lynn D. H., Melkonian M., Moestrup O., Sleigh M. A., 1991. Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164, 1-8.
  • Anderson M. O., Shelat A. A., Guy R. K., 2005. A solid-phase approach to the phallotoxins: total synthesis of [Ala7]-phalloidin. J. Org. Chem. 70, 4578-4584.
  • Askonas B. A., Williamson A. R., Wright B. E., 1970. Selection of a single antibody-forming cell clone and its propagation in syngeneic mice. Proc. Natl. Acad. Sci. USA 67, 1398-1403.
  • Athamneh A. I. M., He Y., Lamoureux P., Fix L., Suter D. M., Miller K. E., 2017. Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci. Rep. 7, 7292.
  • Axelrod D., 1981. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141-145.
  • Belin B. J., Goins L. M., Mullins R. D., 2014. Comparative analysis of tools for live cell imaging of actin network architecture. Bioarchitecture 4, 189-202.
  • Booth D. S., Avila-Sakar A., Cheng Y., 2011. Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J. Vis. Exp., doi: 10.3791/3227.
  • Burnet F. M., 1976. A modification of Jerne's theory of antibody production using the concept of clonal selection. CA. Cancer J. Clin. 26, 119-121.
  • Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C., 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805.
  • Chudakov D. M., Matz M. V, Lukyanov S., Lukyanov K. A., 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103-1163.
  • Coons Albert H., Hugh J., Creech R., Jones Norman, Berliner Ernst, 1942. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159-170.
  • Curtis A. S., 1964. The mechanism of adhesion of cells to glass. a study by interference reflection microscopy. J. Cell Biol. 20, 199-215.
  • Danuser G., Waterman-Storer C. M., 2006. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361-387.
  • Delgado-Álvarez D. L., Callejas-Negrete O. A., Gómez N., Freitag M., Roberson R. W., Smith L. G., Mouriño-Pérez R. R., 2010. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 47, 573-586.
  • Dembo M., Oliver T., Ishihara A., Jacobson K., 1996. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008-2022.
  • Ellinger P., Hirt A., 1929. Mikroskopische Untersuchungen an lebenden Organen. Z. Anat. Entwicklungsgesch. 90, 791-802.
  • Folker E. S., Baker B. M., Goodson H. V, 2005. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior. Mol. Biol. Cell 16, 5373-5384.
  • Franck C., Maskarinec S. A., Tirrell D. A., Ravichandran G., 2011. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 6, e17833.
  • Galfrè G., Milstein C., 1981. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 73, 3-46.
  • Geisler N., Potschka M., Weber K., 1986. Are the terminal domains in intermediate filaments organized as octameric complexes? Reevaluation of a recent suggestion. J. Ultrastruct. Mol. Struct. Res. 94, 239-245.
  • Guizetti J., Schermelleh L., Mäntler J., Maar S., Poser I., Leonhardt H., Müller-Reichert T., Gerlich D. W., 2011. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616-1620.
  • Hanna S., Miskolci V., Cox D., Hodgson L., 2014. A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9, e96469.
  • Harris A. K., Wild P., Stopak D., 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177-179.
  • Hind L. E., Dembo M., Hammer D. A., 2015. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness. Integr. Biol. 7, 447-453.
  • Hochreiter B., Garcia A. P., Schmid J. A., 2015. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors 15, 26281-26314.
  • Ip W., Fischman D. A., 1979. High resolution scanning electron microscopy of isolated and in situ cytoskeletal elements. J. Cell Biol. 83, 249-254.
  • Itoh R. E., Kurokawa K., Ohba Y., Yoshizaki H., Mochizuki N., Matsuda M., 2002. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell. Biol. 22, 6582-6591.
  • Jay D. G., 1988. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl. Acad. Sci. USA 85, 5454-5458.
  • Kanchanawong P., Shtengel G., Pasapera A. M., Ramko E. B., Davidson M. W., Hess H. F., Waterman C. M., 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580-584.
  • Köhler G., Milstein C., 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497.
  • Kukulski W., Schorb M., Welsch S., Picco A., Kaksonen M., Briggs J. A. G., 2011. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111-119.
  • Lazarides E., Weber K., 1974. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl. Acad. Sci. USA 71, 2268-2272.
  • Liu J., Wang Y., Goh W. I., Goh H., Baird M. A., Ruehland S., Teo S., Bate N., Critchley D. R., Davidson M. W., Kanchanawong P., 2015. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl. Acad. Sci. USA 112, E4864-E4873.
  • Lynen F., Wieland U., 1938. Über die Giftstoffe des Knollenblätterpilzes. IV. Justus Liebig's Ann. der Chemie 533, 93-117.
  • Martin K., Reimann A., Fritz R. D., Ryu H., Jeon N. L., Pertz O., 2016. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci. Rep. 6, 21901.
  • McKinney S. A., Murphy C. S., Hazelwood K. L., Davidson M. W., Looger L. L., 2009. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131-133.
  • Melak M., Plessner M., Grosse R., 2017. Actin visualization at a glance. J. Cell Sci. 130, 525-530.
  • Murata K., Wolf M., 2018. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta 1862, 324-334.
  • Muroyama A., Lechler T., 2017. A transgenic toolkit for visualizing and perturbing microtubules reveals unexpected functions in the epidermis. Elife 6, e29834.
  • Nagasaki A., Kijima S. T., Yumoto T., Imaizumi M., Yamagishi A., Kim H., Nakamura C., Uyeda T. Q. P., 2017. The position of the GFP Tag on actin affects the filament formation in mammalian cells. Cell Struct. Funct. 42, 131-140.
  • Pomorski P., 2015. Nagroda nobla z chemii za rok 2014: za 'Opracowanie metod superrozdzielczych w mikrosko pii fluorescencyjnej', Eric Betzig, William Moerner i Stefan Hell. Kosmos 64, 203-209.
  • Pomorski P., Watson J. M., Haskill S., Jacobson K. A., 2004. How adhesion, migration, and cytoplasmic calcium transients influence interleukin-1beta mRNA stabilization in human monocytes. Cell Motil. Cytoskeleton 57, 143-157.
  • Pomorski P., Krzemiński P., Wasik A., Wierzbicka K., Barańska J., Kłopocka W., 2007. Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31-41.
  • Rajfur Z., Roy P., Otey C., Romer L., Jacobson K., 2002. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4, 286-293.
  • Riedl J., 2010. Development and characterization of Lifeact - a versatile marker for the visualization of F-actin. Praca doktorska, Electronische Hochschulschriften, Monachium.
  • Scheele R. B., Borisy G. G., 1978. Electron microscopy of metal-shadowed and negatively stained microtubule protein. Structure of the 30 S oligomer. J. Biol. Chem. 253, 2846-2851.
  • Schneider G., Nieznanski K., Jozwiak J., Slomnicki L.P., Redowicz M.J., Filipek A., 2010. Tubulin binding protein, CacyBP/SIP, induces actin polymerization and may link actin and tubulin cytoskeletons. Biochim. Biophys. Acta 1803, 1308-1317.
  • Sekar R. B., Periasamy A., 2003. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629-633.
  • Shao S., Xiang C., Qin K., Ur Rehman Aziz A., Liao X., Liu B., 2017. Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows. PLoS One 12, e0189088.
  • Shimomura O., Johnson F. H., Saiga Y., 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223-239.
  • Shtengel G., Galbraith J. a, Galbraith C. G., Lippincott-Schwartz J., Gillette J. M., Manley S., Sougrat R., Waterman C. M., Kanchanawong P., Davidson M. W., Fetter R. D., Hess H. F., 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125-3130.
  • Sliogeryte K., Thorpe S. D., Wang Z., Thompson C. L., Gavara N., Knight M. M., 2016. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration. J. Biomech. 49, 310-317.
  • Svitkina T., 2009. Imaging cytoskeleton components by electron microscopy. Methods Mol. Biol. 586, 187-206.
  • Svitkina T. M., Borisy G. G., 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009-1026.
  • Szczęsna E., Kasprzak A. A., 2016. Insights into the process of EB1-dependent tip-tracking of kinesin-14 Ncd. The role of the microtubule Eur. J. Cell Biol. 95, 521-530.
  • Turgay Y., Medalia O., 2017. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 8, 475-481.
  • Vandekerckhove J., Deboben A., Nassal M., Wieland T., 1985. The phalloidin binding site of F-actin. EMBO J. 4, 2815-2818.
  • Verschueren H., 1985. Interference reflection microscopy in cell biology: methodology and applications. J. Cell Sci. 75, 279-301.
  • Voortman L., N. Van der Veeken, J. Hoogenboom, S. V. den Hoedt. 2014. Sample preparation for integrated correlative light and electron microscopy. www.researchgate.net/publication/271210667_Sample_Preparation_for_Integrated_Correlative_Light_and_Electron_Microscopy
  • Waterman-Storer C. M., Salmon E. D., 1997. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417-434.
  • Waterman-Storer C. M., Salmon E. D., 1998. How microtubules get fluorescent speckles. Biophys. J. 75, 2059-2069.
  • Waterman-Storer C. M., Desai A., Bulinski J. C., Salmon E. D., 1998. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227-1230.
  • Wehland J., Osborn M., Weber K., 1977. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth (microfilaments/microtubules/tonofilaments/movement/immunofluorescence microscopy). 74, 5613-5617.
  • Weiger M. C., Wang C.-C., Krajcovic M., Melvin A. T., Rhoden J. J., Haugh J. M., 2009. Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts. J. Cell Sci. 122, 313-323.
  • Wepf R., Amrein M., Burklit U., Gross N. Z., 1991. Platinum/iridium/carbon: a high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures. J. Microsc. 163, 51-64.
  • Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T., 1979. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA 76, 4498-4502.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p219kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.