Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 207-218

Article title

Migracja - regulacja zjawiska przez wybrane szlaki sygnałowe

Content

Title variants

EN
Migration, mechanisms and regulation principles

Languages of publication

PL EN

Abstracts

PL
Ruch i migracja są jedną z głównych funkcji życiowych komórek. W odpowiedzi na różne bodźce, dynamiczny cytoszkielet aktynowy generuje siłę umożliwiającą komórce przemieszczanie się w trójwymiarowej sieci zewnątrzkomórkowej macierzy czy po płaskim podłożu. Wydłużanie filamentów aktynowych na ich kolczastych końcach wypycha błonę komórkową w kierunku migracji, formując strefę frontalną zwaną lamellipodium. Skurcz włókien naprężeniowych umożliwia oderwanie tylnej części komórki i przesunięcie jej do przodu. W odpowiedzi na bodźce ze środowiska, receptory komórki inicjują wiele szlaków sygnałowych powodujących reorganizację mikrofilamentów aktynowych oraz skurcz układu akto-miozynowego. Głównymi regulatorami tych procesów są białka z rodziny Rho, fosfolipidy PIP2 oraz jony wapnia. Receptory nukleotydowe P2Y2 w połączeniu z białkami G regulują poziom fosfatydyloinozytolu-4,5-bisfosforanu (PIP2), który moduluje funkcje białek wiążących aktynę i aktywuje białka Rac1 oraz RhoA. Szlak sygnałowy RhoA/ROCK odgrywa ważną rolę w generowaniu skurczu włókien naprężeniowych. Z kolei białko Rac1 poprzez swój efektor kinazę PAK1 reguluje procesy formujące lamellipodium oraz wysuwanie strefy wiodącej podczas migracji.
EN
Motility is a common feature of numerous cell types. In response to various stimuli, the dynamic actin cytoskeleton and contractility generate forces needed to drive the cell forward. Actin filament elongation on the barbed ends pushes the plasma membrane forward during lamellipodium formation. Stress fibers contraction and/or the contraction of the cortical network are responsible for detaching the rear part of the cell and enable cell body to follow the progressing front. In response to extracellular stimuli, multiple signaling pathways are initiated resulting in the actin filament network reorganization and contractility of acto-myosin system. The key regulators of these processes are Rho family proteins, PIP 2 and calcium ions. Nucleotide receptors P2Y 2 coupled with G-proteins regulate the level of phosphatidylinositol-4,5-bisphosphate (PIP 2 ), which in turn modulates a variety of actin binding proteins, is involved in calcium response, and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. The Rac1 via its effector Pak1 regulates lamellipodium formation and protrusion of the leading edge.

Journal

Year

Volume

67

Issue

1

Pages

207-218

Physical description

Dates

published
2018

Contributors

  • Wydział Biologii i Nauk o Środowisku, Uniwersytet Kardynała Stefana Wyszyńskiego, Wóycickiego 1/3, 01-938 Warszawa,Polska
  • Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 1/3 Wóycicki Str., 01-938 Warsaw, Poland
  • Centrum Doradztwa Naukowo-Badawczego Kawa.ska Sp. z o.o., Techniczna 3, 05-500 Piaseczno, Polska
  • Scientific and Research Advisory Centre, Kawa.ska Ltd., 3 Techniczna Str., 05-500 Piaseczno, Poland

References

  • Abercrombie M., 1980. The crawling movement of metazoan cells. Proc. R. Soc. London B Biol. Sci. 207, 129-147.
  • Allen W. E., Jones G. E., Pollard J. W., Ridley A. J., 1997. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110, 707-720.
  • Amano M., Chihara K., Kimura K., Fukata Y., Nakamura N., Matsuura Y., 1997. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308-1311.
  • Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano T., Matsuura Y., Kaibuchi K., 1996. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249.
  • Andrianantoandro E., Pollard T. D., 2006. Mechanism of Actin Filament Turnover by Severing and Nucleation at Different Concentrations of ADF/Cofilin. Mol. Cell 24, 13-23.
  • Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P., 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805-809.
  • Aspenstrom P., 1997. A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr. Biol. 7, 479-487.
  • Bagchi S., Liao Z., Gonzales F. A., Chorna N. E., Seye C. I., Weisman G. A., Erb L., 2005. The P2Y2 nucleotide receptor interacts with alpha integrins to activate Go and induce cell migration. J. Biol. Chem. 280, 39050-39057.
  • Ballestream C., Hinz B., Imhof B. A., Wehrle-Haller B., 2001. Marching at the front and dragging behind: differential aVb3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155, 1319-1332.
  • Bamburg J. R., McGough A., Ono S., 1999. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9, 364-370.
  • Bernard O., 2007. Lim kinases, regulators of actin dynamics. Int. J. Biochem. Cell Biol. 39, 1071-1076.
  • Blanchoin L., Pollard T. D., Mullins R. D., 2000. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273-1282.
  • Boarder M. R., Hourani S. M., 1998. The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol. Sci. 19, 99-107.
  • Brzeska H., Szczepanowska J., Matsumura F., Korn E. D., 2004. Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells. Cell Motil. Cytoskel. 58, 186-199.
  • Campellone K. G., Welch M. D., 2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell. Biol. 11, 237-251.
  • Chesarone M. A., Goode B. L., 2009. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21, 28-37.
  • Chrzanowska-Wodnicka M., Burridge K., 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403-1415.
  • Clegg D. O., Wingerd K. L., Hikita S. T., Tolhurst E. C., 2003. Integrins in the development, function and dysfunction of the nervous system. Front. Biosci. 8, 723-750.
  • Condeelis J., 2001. How is actin polymerization nucleated in vivo? Trends Cell Biol. 11, 288-293.
  • Cooper G., 2000. Actin, Myosin, and Cell Movement. Cell A Mol. Approach, Sinauer Associates, Sunderland, USA.
  • Cooper J. A., Schafer D. A., 2000. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97-103.
  • Cory G. O., Ridley A. J., 2002. Cell motility: braking WAVEs. Nature 418, 732-733.
  • Dan C., Kelly A., Bernard O., Minden A., 2001. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 276, 32115-32121.
  • Daniels R. H., Bokoch G. M., 1999. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem. Sci. 24, 350-355.
  • DesMarais V., Ghosh M., Eddy R., Condeelis J., 2005. Cofilin takes the lead. J. Cell Sci. 118, 19-26.
  • dos Remedios C. G., Chhabra D., Kekic M., Dedova I. V., Tsubakihara M., Berry D. A., Nosworthy N. J., 2003. Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments. Physiol. Rev. 83, 433-473.
  • Edwards D. C., Sanders L. C., Bokoch G. M., Gill G. N., 1999. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253-259.
  • Erb L., Liu J., Ockerhausen J., Kong Q., Garrad R. C., Griffin K., Neal C., Krugh B., Santiago-Pérez L. I., González F. A., Gresham H. D., Turner J. T., Weisman G. A., 2001. An RGD sequence in the P2Y2 receptor interacts with αvβ3 ntegrins and is required for Go-mediated signal transduction. J. Cell Biol. 153, 491-501.
  • Erb L., Liao Z., Seye C. I., Weisman G.A., 2006. P2 receptors: intracellular signaling. Eur. J. Physiol. 452, 552-562.
  • Etienne-Manneville S., Hall A., 2002. Rho GTPases in cell Biology. Nature 420, 629-635.
  • Fukami K., Furuhashi K., Inagaki M., Endo T., Hatano S., Takenawa T., 1992. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature 359, 150-152.
  • Fukata Y., Amano M., Kaibuchi K., 2001. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22, 32-39.
  • Glacy S. D., 1983. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J. Cell Biol. 97, 1207-1213.
  • Grębecki A., 1990. Dynamic of the contractile system in the pseudopodial tips of normally locomoting amoebae, demonstrated in vivo by video-enhancement. Protoplasma 154, 98-111.
  • Hall A., 1998. G proteins and small GTPases: distant relatives keep in touch. Science 280, 2074-2075.
  • Hartshorne D. J., Ito M., Erdödi F., 1998. Myosin light chain phosphatase: subunit composition, interactions and regulation. J. Muscle Res. Cell Motil. 19, 325-341.
  • Hartwig J. H., Bokoch G. M., Carpenter C. L., Janmey P. A., Taylor L. A., Toker A., 1995. Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643-653.
  • Heath J. P., Holifield B. F., 1993. On the mechanisms of cortical actin flow and its role in cytoskeletal organization in fibroblasts. Symp. Soc. Exp. Biol. 47, 35-56.
  • Hotulainen P., Paunola E., Vartiainen M. K., Lappalainen P., 2005. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649-664.
  • Huang T. Y., DerMardirossian C., Bokoch G. M., 2006. Cofilin phosphatases and regulation of actin dynamics. Curr. Opin. Cell Biol. 18, 26-31.
  • Hynes R. O., 1987. Integrins: a family of cell surface receptors. Cell 48, 549-554.
  • Ichetovkin I., Grant W., Condeelis J., 2002. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79-84.
  • Itoh R. E., Kurokawa K., Ohba Y., Yoshizaki H., Mochizuki N., Matsuda M., 2002. Activation of Rac and Cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell. Biol. 22, 6582-6591.
  • Kaibuchi K., Kuroda S., Amano M., 1999. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459-486.
  • Katoh K., Kano Y., Amano M., Onishi H., Kaibuchi K., Fujiwara K., 2001. Rho-kinase-mediated contraction of isolated stress fibers. J. Cell Biol. 153, 569-584.
  • Kawakatsu T., Kikuchi A., Shimmen T., Sonobe S., 2000. Interaction of actin filaments with the plasma membrane in Amoeba proteus: studies using a cell model and isolated plasma membrane. Cell Struct. Funct. 25, 269-277.
  • Kawano Y., Fukata Y., Oshiro N., Amano M., Nakamura T., Ito M., 1999. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023-1037.
  • Keller H., Eggli P., 1998. Actin accumulation in pseudopods or in the tail of polarized walker carcinosarcoma cells quantitatively correlates with local folding of the cell surface membrane. Cell Motil. Cytoskeleton 40, 342-353.
  • Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M., Yamamori B., Feng J., Nakano T., Okawa K., Iwamatsu A., Kaibuchi K., 1996. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245-248.
  • Kłopocka W., 2001. Struktura i funkcje cytoszkieletu kortykalnego Amoeba proteus. Kosmos 50, 233-241.
  • Kłopocka W., Barańska J., 2005. Rola białek z rodziny Rho w kontroli migracji komórek pełzających. Post. Biochem. 51, 36-43.
  • Kłopocka W., Redowicz M. J., 2003. Effect of Rho family GTP-binding proteins on Amoeba proteus. Protoplasma 220, 163-172.
  • Kłopocka W., Moraczewska J., Redowicz M. J., 2005. Characterisation of the Rac/PAK pathway in Amoeba proteus. Protoplasma 225, 77-84.
  • Kłopocka W., Rędowicz M. J., Wasik A., 2009. Regulacja dynamiki cytoszkieletu kortykalnego podczas migracji swobodnie żyjących ameb. Post. Biochem. 55, 129-137.
  • Korczyński J., Sobierajska K., Krzemiński P., Wasik A., Wypych D., Pomorski P., Kłopocka W., 2011. Is MLC phosphorylation essential for the recovery from ROCK inhibition in glioma C6 cells? Acta Biochim. Pol. 58, 125-130.
  • Kranewitter W. J., Danninger C., Gimona M., 2001. GEF at work: Vav in protruding filopodia. Cell Motil. Cytoskeleton 49, 154-160.
  • Kraynov V. S., Chamberlain C., Bokoch G. M., Schwartz M. A., Slabaugh S., Hahn K. M., 2000. Localized Rac activation dynamics visualized in living cells. Science 290, 333-337.
  • Lasota S., Baster Z., Witko T., Zimoląg E., Sroka J., Rajfur Z., Madeja Z., 2017. Zastosowanie biosensorów typu ERET w badaniach mikroskopowych procesu migracji komórki. Post. Biochem. 63, 16-33.
  • Liao Z., Seye C. I., Weisman G. A., Erb L., 2007. The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J. Cell Sci. 120, 1654-1662.
  • Liu Y., Suzuki Y. J., Day R. M., Fanburg B. L., 2004. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ. Res. 95, 579-586.
  • Luo L., 2000. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173-180.
  • Maekawa M., Ishizaki T., Boku S., Watanabe N., Fujita A., Iwamatsu A., Obinata T., Ohashi K., Mizuno K., Narumiya S., 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898.
  • Mahoney J. P., Sunahara R. K., 2016. Mechanistic insights into GPCR-G protein interactions. Curr. Opin. Struct. Biol. 41, 247-254.
  • Matsumura F., 2005. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol. 15, 371-377.
  • Matsumura F., Ono S., Yamakita Y., Totsukawa G., Yamashiro S., 1998. Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J. Cell Biol. 140, 119-129.
  • McGough A., 1998. F-actin-binding proteins. Curr. Opin. Struct. Biol. 8, 166-176.
  • Mermall V., Post P. L., Mooseker M. S., 1998. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527-533.
  • Moussavi R. S., Kelley C. A., Adelstein R. S., 1993. Phosphorylation of vertebrate nonmuscle and smooth muscle myosin heavy chains and light chains. Mol. Cell. Biochem. 128, 219-227.
  • Niwa R., Nagata-Ohashi K., Takeichi M., Mizuno K., Uemura T., 2002. Control of Actin Reorganization by Slingshot, a Family of Phosphatases that Dephosphorylate ADF/cofilin. Cell 108, 233-246.
  • Nobes C. D., Hall A., 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62.
  • Opas M., Rinaldi R., 1976. Ca++ controlled contraction-relaxation cycle in glycerinated amoeboid cells. Protoplasma 90, 393-397.
  • Pak C. W., Flynn K. C., Bamburg J. R., 2008. Actin-binding proteins take the reins in growth cones. Nat. Rev. Neurosci. 9, 136-147.
  • Pollard T. D., Borisy G. G., 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
  • Pollard T. D., Korn E. D., 1973. Acanthamoeba myosin I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682-4690.
  • Pollard T. D., Blanchoin L., Mulins R. D., 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545-576.
  • Pomorski P., Watson J. M., Haskill S., Jacobson K. A., 2004. How adhesion, migration, and cytoplasmic calcium transients influence interleukin-1beta mRNA stabilization in human monocytes. Cell Motil. Cytoskeleton 57, 143-157.
  • Price L. S., Leng J., Schwartz M. A., Bokoch G. M., 1998. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863-1871.
  • Putney J. W., 1990. Capacitative calcium entry revisited. Cell Calcium 11, 611-624.
  • Ramachandran C., Patil R. V., Combrink K., Sharif N. A., Srinivas S. P., 2011. Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork. Mol. Vis. 17, 1877-1890.
  • Reig G., Pulgar E., Concha M. L., 2014.. Cell migration: from tissue culture to embryos. Development 141, 1999-2013.
  • Rickert P., Weiner O. D., Wang F., Bourne H. R., Servant G., 2000. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 10, 466-473.
  • Ridley A. J., 2001. Rho GTPases and cell migration. J. Cell Sci. 114, 2713-2722.
  • Ridley A. J., 2011. Life at the leading edge. Cell 145, 1012-1022.
  • Ridley A. J., 2015. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 36: 103-112.
  • Ridley A. J., Hall A., 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399.
  • Ridley A. J., Comoglio P. M., Hall A., 1995. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15, 1110-1122.
  • Ridley A. J., Schwartz M. A., Burridge K., Firtel R. A., Ginsberg M. H., Borisy G., Parsons J. T., Horwitz A. R., 2003. Cell migration: integrating signals from front to back. Science 302, 1704-1709.
  • Riento K., Ridley A. J., 2003. ROCKs: Multifunctional kinases in cell behavior. Mol. Cell. Biol. 4, 446-456.
  • Rinaldi R., Opas M., Hrebenda B., 1975. Contractility of glycerinated Amoeba proteus and Chaos-chaos. J. Protozool. 22, 286-292.
  • Royal I., Lamarche-Vane N., Lamorte L., Kaibuchi K., Park M., 2000. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 11, 1709-1725.
  • Sauzeau V., Le Jeune H., Cario-Toumaniantz C., Vaillant N., Gadeau A. P., Desgranges C., Scalbert E., Chardin P., Pacaud P., Loirand G., 2000. P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, 1751-1761.
  • Schmitz A. A., Govek E. E., Bottner B., Van Aelst L., 2000. Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. 261, 1-12.
  • Scita G., Tenca P., Frittoli E., Tocchetti A., Innocenti M., Giardina G., Di Fiore P. P., 2000. Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J. 19, 2393-2398.
  • Simard-Duquesne N., Couillard P., 1962. Ameboid movement. II. Research of contractile proteins in Amoeba proteus. Exp. Cell Res. 28, 92-98.
  • Singh I., Knezevic N., Ahmmed G. U., Kini V., Malik A. B., Mehta D., 2007. Gαq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J. Biol. Chem. 282, 7833-7843.
  • Small J. V., 1998. Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404, 271-281.
  • Somlyo A. P., Somlyo A. V., 2000. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177-185.
  • Somlyo A. P., Somlyo A. V., 2003. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358.
  • Targos B., Pomorski P., Krzemiński P., Barańska J., Redowicz M. J., Kłopocka W., 2006. Effect of Rho-associated kinase inhibition on actin cytoskeleton structure and calcium response in glioma C6 cells. Acta Biochim. Pol. 53, 825-831.
  • Taylor D. L., Wang Y. L., Heiple J. M., 1980. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas. J. Cell Biol. 86, 590-598.
  • Theriot J. A., Mitchison T. J., 1991. Actin microfilament dynamics in locomoting cells. Nature 352, 126-131.
  • Tolias K. F., Hartwig J. H., Ishihara H., Shibasaki Y., Cantley L. C., Carpenter C. L., 2000. Type Ialpha phosphatidylinositol-4-phasphate 5-kinase mediates Rac-dependent actin assembly. Curr. Bio. 10, 153-156.
  • Totsukawa G., Yamakita Y., Yamashiro S., Hartshorne D. J., Sasaki Y., Matsumura F., 2000. Distinct Roles of ROCK (Rho-kinase) and MLCK in Spatial Regulation of MLC Phosphorylation for Assembly of Stress Fibers and Focal Adhesion in 3T3 Fibroblasts. J. Cell Biol. 150, 797-806.
  • Trojanek J., 2015. Rola metaloproteinaz macierzy zewnątrzkomórkowej i tkankowych inhibitorów metaloproteinaz w nadciśnieniu tętniczym. Patogeneza nadciśnienia a problem otyłości. Post. Biochem. 61, 356-363.
  • Tsuji T., Ishizaki T., Okamoto M., Higashida C., Kimura K., Furuyashiki T., Arakawa Y., Birge R. B., Nakamoto T., Hirai H., Narumiya S., 2002. ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J. Cell Biol. 157, 819-830.
  • van Leeuwen F. N., van Delft S., Kain H. E., van der Kammen R. A., Collard J. G., 1999. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat. Cell Biol. 1, 242-248.
  • van Rheenen J., Song X., van Roosmalen W., Cammer M., Chen X., DesMarais V., Yip S. C., Backer J. M., Eddy R. J., Condeelis J. S., 2007. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J. Cell Biol. 179, 1247-1259.
  • van Rheenen J., Condeelis J., Glogauer M. A., 2009. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J. Cell Sci. 122, 305-311.
  • Verkhovsky A. B., Svitkina T. M., Borisy G. G., 1999. Self-polarization and directional motility of cytoplasm. Curr. Biol. 14, 11-20.
  • Wang M., Kong Q., Gonzalez F. A., Sun G., Erb L., Seye C., Weisman G. A., 2005. P2Y2 nucleotide receptor interaction with αV integrin mediates astrocyte migration. J. Neurochem. 95, 630-640.
  • Watanabe N., Kato T., Fujita A., Ishizaki T., Narumiya S., 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136-143.
  • Welch M. D., Mullins R. D., 2002. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247-288.
  • Winder S. J., Ayscough K. R., 2005. Actin-binding proteins. J. Cell Sci. 118, 651-654.
  • Wong W. T., Faulkner-Jones B. E., Sanes J. R., Wong R. O., 2000. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024-5036.
  • Worthylake R. A., Lemoine S., Watson J. M., Burridge K., 2001. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147-160.
  • Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K., 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809-812.
  • Yilmaz M., Christofori G., 2010. Mechanisms of motility in metastasizing cells. Mol. Cancer Res. 8, 629-642.
  • Yumura S., Fukui Y., 1998. Spatiotemporal dynamics of actin concentration during cytokinesis and locomotion in Dictyostelium. J. Cell Sci. 111, 2097-2108.
  • Zhang K., Chen J., 2012. The regulation of integrin by divalent cations. Cell Adh. Migr. 6, 20-29.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p207kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.